Menu Close

prove-that-0-n-x-dx-n-n-1-2-and-0-n-x-dx-n-n-1-2-when-is-floor-and-is-ceil-




Question Number 88852 by M±th+et£s last updated on 13/Apr/20
prove that  ∫_0 ^n ⌈x⌉dx= ((n(n+1))/2) and ∫_0 ^n ⌊x⌋dx=((n(n−1))/2)  when ⌊..⌋ is floor and ⌈..⌉ is ceil
provethat0nxdx=n(n+1)2and0nxdx=n(n1)2when..isfloorand..isceil
Answered by mr W last updated on 13/Apr/20
∫_0 ^n ⌈x⌉dx=Σ_(k=0) ^(n−1) ∫_k ^(k+1) ⌈x⌉dx=Σ_(k=0) ^(n−1) ∫_k ^(k+1) (k+1)dx  =Σ_(k=0) ^(n−1) (k+1)=Σ_(k=1) ^n k=((n(n+1))/2)    ∫_0 ^n ⌊x⌋dx=Σ_(k=0) ^(n−1) ∫_k ^(k+1) ⌊x⌋dx=Σ_(k=0) ^(n−1) ∫_k ^(k+1) kdx  =Σ_(k=0) ^(n−1) k=(((n−1)n)/2)
0nxdx=n1k=0kk+1xdx=n1k=0kk+1(k+1)dx=n1k=0(k+1)=nk=1k=n(n+1)20nxdx=n1k=0kk+1xdx=n1k=0kk+1kdx=n1k=0k=(n1)n2
Commented by M±th+et£s last updated on 13/Apr/20
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *