Question Number 88852 by M±th+et£s last updated on 13/Apr/20
$${prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{{n}} \lceil{x}\rceil{dx}=\:\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\:{and}\:\int_{\mathrm{0}} ^{{n}} \lfloor{x}\rfloor{dx}=\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}} \\ $$$${when}\:\lfloor..\rfloor\:{is}\:{floor}\:{and}\:\lceil..\rceil\:{is}\:{ceil} \\ $$
Answered by mr W last updated on 13/Apr/20
$$\int_{\mathrm{0}} ^{{n}} \lceil{x}\rceil{dx}=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\int_{{k}} ^{{k}+\mathrm{1}} \lceil{x}\rceil{dx}=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\int_{{k}} ^{{k}+\mathrm{1}} \left({k}+\mathrm{1}\right){dx} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\left({k}+\mathrm{1}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{{n}} \lfloor{x}\rfloor{dx}=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\int_{{k}} ^{{k}+\mathrm{1}} \lfloor{x}\rfloor{dx}=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\int_{{k}} ^{{k}+\mathrm{1}} {kdx} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}{k}=\frac{\left({n}−\mathrm{1}\right){n}}{\mathrm{2}} \\ $$
Commented by M±th+et£s last updated on 13/Apr/20
$${thank}\:{you}\:{sir} \\ $$