Menu Close

prove-that-0-pi-2-ln-1-sinx-1-sinx-cosx-1-sinx-1-sinx-dx-8-




Question Number 114107 by mathdave last updated on 17/Sep/20
prove that  ∫_0 ^(π/2) [((ln(((1−sinx)/(1+sinx)))(√(cosx)))/((1+sinx)(√(1−sinx))))]dx=−8
provethat0π2[ln(1sinx1+sinx)cosx(1+sinx)1sinx]dx=8
Commented by mathdave last updated on 17/Sep/20
Commented by Tawa11 last updated on 06/Sep/21
great sir
greatsir
Answered by maths mind last updated on 17/Sep/20
=∫_0 ^(π/2) ((ln(((1−cos(x))/(1+cos(x))))(√(sin(x))))/((1+cos(x))(√(1−cos(x)))))dx  1+cos(x)=2cos^2 ((x/2)) and 1−cos(x)=2sin^2 ((x/2))⇒  =∫_0 ^(π/2) ((ln(tg^2 ((x/2)))(√(2sin((x/2))cos((x/2)))))/(2cos^2 ((x/2))(√(2sin^2 ((x/2))))))dx  =2∫_0 ^(π/2) ((ln(tg((x/2))))/( (√((sin((x/2)))/(cos((x/2)))))))(dx/(2cos^2 ((x/2))))  tg((x/2))=t⇒dt=(dx/(2cos^2 ((x/2)))) we get  =2∫_0 ^1 ((ln(x))/( (√x)))dx=[4(√x)ln(x)]_0 ^1 −4∫_0 ^1 (dx/( (√x)))=−4[2(√x)]_0 ^1 =−8
=0π2ln(1cos(x)1+cos(x))sin(x)(1+cos(x))1cos(x)dx1+cos(x)=2cos2(x2)and1cos(x)=2sin2(x2)=0π2ln(tg2(x2))2sin(x2)cos(x2)2cos2(x2)2sin2(x2)dx=20π2ln(tg(x2))sin(x2)cos(x2)dx2cos2(x2)tg(x2)=tdt=dx2cos2(x2)weget=201ln(x)xdx=[4xln(x)]01401dxx=4[2x]01=8

Leave a Reply

Your email address will not be published. Required fields are marked *