Menu Close

Prove-that-0-pi-2-sin-2-x-sin-x-cos-x-dx-1-2-log-2-1-




Question Number 177298 by peter frank last updated on 03/Oct/22
Prove that  ∫_0 ^(π/2) ((sin^2 x)/((sin x+cos x)))dx=(1/( (√2)))log ((√2)+1)
Provethat0π2sin2x(sinx+cosx)dx=12log(2+1)
Answered by Ar Brandon last updated on 11/Oct/22
I=∫_0 ^(π/2) ((sin^2 x)/(sinx+cosx))dx ...eqn(i)  I=∫_0 ^(π/2) ((cos^2 x)/(sinx+cosx))dx   ...eqn(ii) [letting t=(π/2)−x]  eqn(i)+eqn(ii) ⇒  2I=∫_0 ^(π/2) ((sin^2 x+cos^2 x)/(sinx+cosx))dx=∫_0 ^(π/2) (1/(sinx+cosx))dx  I=(1/2)∫_0 ^(π/2) (1/(sinx+cosx))dx=(1/2)∫_0 ^1 (1/(((2t)/(1+t^2 ))+((1−t^2 )/(1+t^2 ))))∙(2/(1+t^2 ))dt     =∫_0 ^1 (1/(1+2t−t^2 ))dt=∫_0 ^1 (dt/(2−(t−1)^2 ))=(1/( (√2)))[argth(((t−1)/( (√2))))]_0 ^1      =(1/(2(√2)))[ln∣((t+(√2)−1)/(t−(√2)−1))∣]_0 ^1 =(1/(2(√2)))ln∣(((√2)+1)/( (√2)−1))∣=(1/(2(√2)))ln((√2)+1)^2 =(1/( (√2)))ln((√2)+1)
I=0π2sin2xsinx+cosxdxeqn(i)I=0π2cos2xsinx+cosxdxeqn(ii)[lettingt=π2x]eqn(i)+eqn(ii)2I=0π2sin2x+cos2xsinx+cosxdx=0π21sinx+cosxdxI=120π21sinx+cosxdx=120112t1+t2+1t21+t221+t2dt=0111+2tt2dt=01dt2(t1)2=12[argth(t12)]01=122[lnt+21t21]01=122ln2+121∣=122ln(2+1)2=12ln(2+1)
Commented by peter frank last updated on 03/Oct/22
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *