prove-that-0-pi-4-cos-nx-cos-n-x-dx-2-n-pi-8-k-1-n-1-sin-kpi-4-2k-2-k-n-N- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 83108 by M±th+et£s last updated on 28/Feb/20 provethat∫0π4cos(nx)cosn(x)dx=2n[π8−∑n−1k=1sin(kπ4)2k(2)k]n∈N∗ Answered by mind is power last updated on 28/Feb/20 =Re∫0π4einx(eix+e−ix2)n=Re{∫0π42nei2nx(e2ix+1)ndx}u=e2ixdu=2ie2ixdx=Re{2n∫Cun−1(1+u)n.du2i}Cquartunitecircle∫C′zn−1(1+z)ndz=0witheC′=[0,1]∪[eit,0<t<π2]∪[i,0]sicef(z)=zn−1(1+z)n12iisHolomorphic∫C′f(z)dz=0⇒∫Cf(z)=−∫01f(z)dz−∫i0f(z)dzRe{2n∫f(z)dz}=Re{−2n2i∫01zn−1(1+z)ndz−2n2i∫i0zn−1(1+z)ndz}=Re{2n2i∫0izn−1(1+z)ndz}xn−1(1+x)n=(x+1−1)n−1(1+x)n=∑n−1k=0Cn−1k(x+1)n−1−k(−1)k=∑n−1k=0Cn−1k(−1)k(x+1)1+k==∑nj=1Cn−1j−1(−1)j−1(x+1)j∫0i∑nj=1Cn−1j−1(−1)j−1(x+1)jdx=∫0idx(x+1)+∑nj=2∫0iCn−1j−1(−1)j−1(x+1)j=ln(1+i)+∑nj=2Cn−1j−1(−1)j−1∫0idx(x+1)j=ln(2)+iπ4+∑nj=2Cn−1j−1(−1)j−1.[(x+1)1−j1−j]0i=ln(2)+iπ4+∑nj=2Cn−1j−1.(1+i)1−j−11−j=ln(2)+iπ4+∑nj=2Cn−1j−1(2)1−jei(1−j)π41−j−∑nj=2Cn−1j−11−j=iπ4+∑n−1j=1Cn−1j(2)−jei(jπ4)−j−∑n−1j=1Cn−1−j−jRe{2n2i.[iπ4−∑n−1j=1Cn−1jeijπ4j(2)j+∑n−1j=1Cn−1jj]}=2nπ8−12∑n−1j=1Cn−1j2nsin(jπ4)j(2)j=2n(π8−∑n−1k=1Cn−1ksin(kπ4)2k(2)k),checkitSir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-e-e-dt-t-Next Next post: u-n-3-u-n-2-u-n-1-u-n-3-n-IN-find-u-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.