Menu Close

prove-that-0-pi-4-cos-nx-cos-n-x-dx-2-n-pi-8-k-1-n-1-sin-kpi-4-2k-2-k-n-N-




Question Number 83108 by M±th+et£s last updated on 28/Feb/20
prove that  ∫_0 ^(π/4) ((cos(nx))/(cos^n (x))) dx =2^n [(π/8)−Σ_(k=1) ^(n−1) ((sin(((kπ)/4)))/(2k((√2))^k ))] n∈N^∗
provethat0π4cos(nx)cosn(x)dx=2n[π8n1k=1sin(kπ4)2k(2)k]nN
Answered by mind is power last updated on 28/Feb/20
=Re∫_0 ^(π/4) (e^(inx) /((((e^(ix) +e^(−ix) )/2))^n ))   =Re{∫_0 ^(π/4) ((2^n e^(i2nx) )/((e^(2ix) +1)^n ))dx}  u=e^(2ix)   du=2ie^(2ix) dx  =Re{2^n ∫_C (u^(n−1) /((1+u)^n )).(du/(2i)) }   C   quart unite circle  ∫_C^′  (z^(n−1) /((1+z)^n ))dz=0   withe C′=[0,1]∪[e^(it) , 0<t<(π/2)]∪[i,0]  sice f(z)=(z^(n−1) /((1+z)^n ))(1/(2i)) is Holomorphic  ∫_(C′) f(z)dz=0⇒∫_C f(z)=−∫_0 ^1 f(z)dz−∫_i ^0 f(z)dz  Re{2^n ∫f(z)dz}=Re{−(2^n /(2i))∫_0 ^1 (z^(n−1) /((1+z)^n ))dz−(2^n /(2i))∫_i ^0 (z^(n−1) /((1+z)^n ))dz}  =Re{(2^n /(2i))∫_0 ^i (z^(n−1) /((1+z)^n ))dz}  (x^(n−1) /((1+x)^n ))=(((x+1−1)^(n−1) )/((1+x)^n ))  =Σ_(k=0) ^(n−1) C_(n−1) ^k (x+1)^(n−1−k) (−1)^k   =Σ_(k=0) ^(n−1) ((C_(n−1) ^k (−1)^k )/((x+1)^(1+k) ))==Σ_(j=1) ^n ((C_(n−1) ^(j−1) (−1)^(j−1) )/((x+1)^j ))  ∫_0 ^i Σ_(j=1) ^n ((C_(n−1) ^(j−1) (−1)^(j−1) )/((x+1)^j ))dx  =∫_0 ^i (dx/((x+1)))+Σ_(j=2) ^n ∫_0 ^i ((C_(n−1) ^(j−1) (−1)^(j−1) )/((x+1)^j ))  =ln(1+i)+Σ_(j=2) ^n C_(n−1) ^(j−1) (−1)^(j−1) ∫_0 ^i (dx/((x+1)^j ))  =ln((√2))+i(π/4)+Σ_(j=2) ^n C_(n−1) ^(j−1) (−1)^(j−1) .[(((x+1)^(1−j) )/(1−j))]_0 ^i   =ln((√2))+i(π/4)+Σ_(j=2) ^n C_(n−1) ^(j−1) .(((1+i)^(1−j) −1)/(1−j))  =ln((√2))+((iπ)/4)+Σ_(j=2) ^n C_(n−1) ^(j−1) ((((√2))^(1−j) e^(i(((1−j)π)/4)) )/(1−j))−Σ_(j=2) ^n (C_(n−1) ^(j−1) /(1−j))  =((iπ)/4)+Σ_(j=1) ^(n−1) C_(n−1) ^j ((((√2))^(−j) e^(i(((jπ)/4))) )/(−j))−Σ_(j=1) ^(n−1) (C_(n−1) ^(−j) /(−j))  Re{(2^n /(2i)).[((iπ)/4)−Σ_(j=1) ^(n−1) C_(n−1) ^j (e^(i((jπ)/4)) /(j((√2))^j ))+Σ_(j=1) ^(n−1) (C_(n−1) ^j /j)]}  =((2^n π)/8)−(1/2)Σ_(j=1) ^(n−1) C_(n−1) ^j ((2^n sin(((jπ)/4)))/(j((√2))^j ))  =2^n ((π/8)−Σ_(k=1) ^(n−1) ((C_(n−1) ^k sin(((kπ)/4)))/(2k((√2))^k ))),check it Sir
=Re0π4einx(eix+eix2)n=Re{0π42nei2nx(e2ix+1)ndx}u=e2ixdu=2ie2ixdx=Re{2nCun1(1+u)n.du2i}CquartunitecircleCzn1(1+z)ndz=0witheC=[0,1][eit,0<t<π2][i,0]sicef(z)=zn1(1+z)n12iisHolomorphicCf(z)dz=0Cf(z)=01f(z)dzi0f(z)dzRe{2nf(z)dz}=Re{2n2i01zn1(1+z)ndz2n2ii0zn1(1+z)ndz}=Re{2n2i0izn1(1+z)ndz}xn1(1+x)n=(x+11)n1(1+x)n=n1k=0Cn1k(x+1)n1k(1)k=n1k=0Cn1k(1)k(x+1)1+k==nj=1Cn1j1(1)j1(x+1)j0inj=1Cn1j1(1)j1(x+1)jdx=0idx(x+1)+nj=20iCn1j1(1)j1(x+1)j=ln(1+i)+nj=2Cn1j1(1)j10idx(x+1)j=ln(2)+iπ4+nj=2Cn1j1(1)j1.[(x+1)1j1j]0i=ln(2)+iπ4+nj=2Cn1j1.(1+i)1j11j=ln(2)+iπ4+nj=2Cn1j1(2)1jei(1j)π41jnj=2Cn1j11j=iπ4+n1j=1Cn1j(2)jei(jπ4)jn1j=1Cn1jjRe{2n2i.[iπ4n1j=1Cn1jeijπ4j(2)j+n1j=1Cn1jj]}=2nπ812n1j=1Cn1j2nsin(jπ4)j(2)j=2n(π8n1k=1Cn1ksin(kπ4)2k(2)k),checkitSir

Leave a Reply

Your email address will not be published. Required fields are marked *