Question Number 18223 by Arnab Maiti last updated on 17/Jul/17

Answered by alex041103 last updated on 17/Jul/17
![First we will integrate by parts u=x dv=((tan x)/(tan x + sec x)) du=dx Now ((tan x)/(tan x + sec x)) = ((tan x(sec x − tan x))/(sec^2 x − tan^2 x))= =tan x(sec x − tan x)= =sec x tan x − tan^2 x So v=sec x − tan x + x Now we integrate ∫_0 ^( π) ((x tanx)/(tanx+secx))dx= ∫_0 ^( π) x(sec x tan x − tan^2 x)dx= =x(sec x − tan x + x)_0 ^π − ∫_0 ^( π) (sec x − tan x + x)dx =π(π−1)−[ln∣sec x + tan x∣+ln∣cos x∣+(x^2 /2)]_0 ^π = =π^2 −π−[ln∣1+sin x∣+(x^2 /2)]_0 ^π = =(π^2 /2)−π=(π/2)(π−2) ⇒∫_0 ^( π) ((x tan x)/(sec x + tan x))dx = (π/2)(π−2)](https://www.tinkutara.com/question/Q18231.png)
Commented by Arnab Maiti last updated on 17/Jul/17

Commented by alex041103 last updated on 17/Jul/17

Commented by alex041103 last updated on 17/Jul/17
