Menu Close

prove-that-0-pi-x-tanx-tanx-secx-dx-pi-2-pi-2-




Question Number 18223 by Arnab Maiti last updated on 17/Jul/17
prove that ∫_0 ^( π) ((x tanx)/(tanx+secx))dx=(π/2)(π−2)
provethat0πxtanxtanx+secxdx=π2(π2)
Answered by alex041103 last updated on 17/Jul/17
First we will integrate by parts  u=x    dv=((tan x)/(tan x + sec x))  du=dx  Now  ((tan x)/(tan x + sec x)) = ((tan x(sec x − tan x))/(sec^2 x − tan^2 x))=  =tan x(sec x − tan x)=  =sec x tan x − tan^2 x  So v=sec x − tan x + x  Now we integrate   ∫_0 ^( π) ((x tanx)/(tanx+secx))dx=  ∫_0 ^( π) x(sec x tan x − tan^2 x)dx=  =x(sec x − tan x + x)_0 ^π  − ∫_0 ^( π) (sec x − tan x + x)dx  =π(π−1)−[ln∣sec x + tan x∣+ln∣cos x∣+(x^2 /2)]_0 ^π =  =π^2 −π−[ln∣1+sin x∣+(x^2 /2)]_0 ^π =  =(π^2 /2)−π=(π/2)(π−2)  ⇒∫_0 ^( π) ((x tan x)/(sec x + tan x))dx = (π/2)(π−2)
Firstwewillintegratebypartsu=xdv=tanxtanx+secxdu=dxNowtanxtanx+secx=tanx(secxtanx)sec2xtan2x==tanx(secxtanx)==secxtanxtan2xSov=secxtanx+xNowweintegrate0πxtanxtanx+secxdx=0πx(secxtanxtan2x)dx==x(secxtanx+x)0π0π(secxtanx+x)dx=π(π1)[lnsecx+tanx+lncosx+x22]0π==π2π[ln1+sinx+x22]0π==π22π=π2(π2)0πxtanxsecx+tanxdx=π2(π2)
Commented by Arnab Maiti last updated on 17/Jul/17
Thank you.  please solve your this question  ∫_0 ^( 1) ((x^4 (1−x)^4 )/(1+x^2 ))dx
Thankyou.pleasesolveyourthisquestion01x4(1x)41+x2dx
Commented by alex041103 last updated on 17/Jul/17
is it Q.17463
isitQ.17463
Commented by alex041103 last updated on 17/Jul/17
you can see the answer and solution   at Q.17463
youcanseetheanswerandsolutionatQ.17463

Leave a Reply

Your email address will not be published. Required fields are marked *