Prove-that-0-pi-xtan-x-sec-x-tan-x-dx-pi-2-2-pi- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 152276 by peter frank last updated on 27/Aug/21 Provethat∫0πxtanxsecx+tanxdx=π22−π Answered by Olaf_Thorendsen last updated on 27/Aug/21 F(x)=∫0πxtanxsecx+tanxdxF(x)=∫0πxtanx(secx−tanx)dxF(x)=∫0πx(sinxcos2x−(1+tan2x)+1)dxF(x)=[x(secx−tanx+x)]0π−∫0π(secx−tanx+x)dxF(x)=π(π−1)−[ln∣secx+tanx∣+ln∣cosx∣+x22]0πF(x)=π(π−1)−π22=π22−π Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-21205Next Next post: Find-a-triple-of-rational-numbers-a-b-c-such-that-2-1-3-1-1-3-a-1-3-b-1-3-c-1-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.