Menu Close

Prove-that-0-sh-t-sh-t-dt-2-tan-2-




Question Number 144180 by Willson last updated on 22/Jun/21
Prove that  ∫^( +∞) _0  ((sh(𝛂t))/(sh(t)))dt = (𝛑/2)tan(((𝛑𝛂)/2))
Provethat0+sh(αt)sh(t)dt=π2tan(πα2)
Answered by mindispower last updated on 22/Jun/21
=∫_0 ^∞ ((e^(at) −e^(−at) )/(e^t −e^(−t) ))dt=  e^(−t) =u  ⇔∫_0 ^1 ((u^(−a) −u^a )/((1/u)−u)).(1/u)du  =∫_0 ^1 ((u^(−a) −u^a )/(1−u^2 ))du  =∫_0 ^1 ((x^((−a)/2) −x^(a/2) )/(1−x)).(x^(−(1/2)) /2)  =(1/2)∫_0 ^1 ((x^(−((a+1)/2)) −x^((a−1)/2) )/(1−x))dx  Ψ(x+1)=−γ+∫_0 ^1 ((1−t^x )/(1−t))dt  we get(1/2)( Ψ(((a+1)/2))−Ψ(((1−a)/2)))=(1/2)(Ψ(1−((1−a)/2))−Ψ(((1−a)/2)))  Ψ(1−z)−Ψ(z)=πcot(πz)  we get (1/2)(πcot(((π(1−a))/2)))=(π/2)cot((π/2)−((aπ)/2))  =(π/2)tan(((aπ)/2))
=0eateatetetdt=et=u01uaua1uu.1udu=01uaua1u2du=01xa2xa21x.x122=1201xa+12xa121xdxΨ(x+1)=γ+011tx1tdtweget12(Ψ(a+12)Ψ(1a2))=12(Ψ(11a2)Ψ(1a2))Ψ(1z)Ψ(z)=πcot(πz)weget12(πcot(π(1a)2))=π2cot(π2aπ2)=π2tan(aπ2)
Answered by mathmax by abdo last updated on 23/Jun/21
Φ=∫_0 ^∞  ((sh(αt))/(sh(t)))dt ⇒Φ=∫_0 ^∞ ((e^(αt) −e^(−αt) )/(e^t −e^(−t) ))dt  =_(e^(−t)  =x)   −∫_0 ^1  ((x^(−α) −x^α )/(x^(−1) −x))(−(dx/x)) =∫_0 ^1  ((x^(−α) −x^α )/(1−x^2 ))dx  =_(x^2  =y)     ∫_0 ^1  ((y^(−(α/2)) −y^(α/2) )/(1−y))(dy/(2(√y)))  =(1/2)∫_0 ^1  ((y^(−((α+1)/2)) −y^((α−1)/2) )/(1−y))dy  =−(1/2)∫_0 ^1  ((1−y^(−((α+1)/2)) )/(1−y))dy +(1/2)∫_0 ^1  ((1−y^((α−1)/2) )/(1−y))dy  we know Ψ(z+1)=−γ +∫_0 ^1  ((1−y^z )/(1−y))dy ⇒  ∫_0 ^1  ((1−y^(−((α+1)/2)) )/(1−y))dy=Ψ(1−((α+1)/2))+γ=Ψ(((1−α)/2))+γ  ∫_0 ^1  ((1−y^((α−1)/2) )/(1−y))dy =Ψ(1+((α−1)/2))+γ=Ψ(((α+1)/2)) ⇒  Φ=(1/2){Ψ(((α+1)/2))−Ψ(((1−α)/2))}  we have also Ψ(1−z)−Ψ(z)=πcotan(πz) ⇒  Ψ(((1+α)/2))−Ψ(((1−α)/2))=Ψ(1−((1−α)/2))−Ψ(((1−α)/2))  =πcotan(π(((1−α)/2)))=πcotan((π/2)−((πα)/2))=πtan(((πα)/2))
Φ=0sh(αt)sh(t)dtΦ=0eαteαtetetdt=et=x01xαxαx1x(dxx)=01xαxα1x2dx=x2=y01yα2yα21ydy2y=1201yα+12yα121ydy=12011yα+121ydy+12011yα121ydyweknowΨ(z+1)=γ+011yz1ydy011yα+121ydy=Ψ(1α+12)+γ=Ψ(1α2)+γ011yα121ydy=Ψ(1+α12)+γ=Ψ(α+12)Φ=12{Ψ(α+12)Ψ(1α2)}wehavealsoΨ(1z)Ψ(z)=πcotan(πz)Ψ(1+α2)Ψ(1α2)=Ψ(11α2)Ψ(1α2)=πcotan(π(1α2))=πcotan(π2πα2)=πtan(πα2)

Leave a Reply

Your email address will not be published. Required fields are marked *