Prove-that-0-sh-t-sh-t-dt-2-tan-2- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 144180 by Willson last updated on 22/Jun/21 Provethat∫0+∞sh(αt)sh(t)dt=π2tan(πα2) Answered by mindispower last updated on 22/Jun/21 =∫0∞eat−e−atet−e−tdt=e−t=u⇔∫01u−a−ua1u−u.1udu=∫01u−a−ua1−u2du=∫01x−a2−xa21−x.x−122=12∫01x−a+12−xa−121−xdxΨ(x+1)=−γ+∫011−tx1−tdtweget12(Ψ(a+12)−Ψ(1−a2))=12(Ψ(1−1−a2)−Ψ(1−a2))Ψ(1−z)−Ψ(z)=πcot(πz)weget12(πcot(π(1−a)2))=π2cot(π2−aπ2)=π2tan(aπ2) Answered by mathmax by abdo last updated on 23/Jun/21 Φ=∫0∞sh(αt)sh(t)dt⇒Φ=∫0∞eαt−e−αtet−e−tdt=e−t=x−∫01x−α−xαx−1−x(−dxx)=∫01x−α−xα1−x2dx=x2=y∫01y−α2−yα21−ydy2y=12∫01y−α+12−yα−121−ydy=−12∫011−y−α+121−ydy+12∫011−yα−121−ydyweknowΨ(z+1)=−γ+∫011−yz1−ydy⇒∫011−y−α+121−ydy=Ψ(1−α+12)+γ=Ψ(1−α2)+γ∫011−yα−121−ydy=Ψ(1+α−12)+γ=Ψ(α+12)⇒Φ=12{Ψ(α+12)−Ψ(1−α2)}wehavealsoΨ(1−z)−Ψ(z)=πcotan(πz)⇒Ψ(1+α2)−Ψ(1−α2)=Ψ(1−1−α2)−Ψ(1−α2)=πcotan(π(1−α2))=πcotan(π2−πα2)=πtan(πα2) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: sin-20-sin-40-sin-80-3-8-Next Next post: Estimate-0-0-5-1-x-4-dx-with-an-error-0-0001- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.