Question Number 144180 by Willson last updated on 22/Jun/21
$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\underset{\mathrm{0}} {\int}^{\:+\infty} \:\frac{\boldsymbol{\mathrm{sh}}\left(\boldsymbol{\alpha\mathrm{t}}\right)}{\boldsymbol{\mathrm{sh}}\left(\boldsymbol{\mathrm{t}}\right)}\boldsymbol{{dt}}\:=\:\frac{\boldsymbol{\pi}}{\mathrm{2}}\boldsymbol{{tan}}\left(\frac{\boldsymbol{\pi\alpha}}{\mathrm{2}}\right) \\ $$
Answered by mindispower last updated on 22/Jun/21
$$=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{{at}} β{e}^{β{at}} }{{e}^{{t}} β{e}^{β{t}} }{dt}= \\ $$$${e}^{β{t}} ={u} \\ $$$$\Leftrightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{u}^{β{a}} β{u}^{{a}} }{\frac{\mathrm{1}}{{u}}β{u}}.\frac{\mathrm{1}}{{u}}{du} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{u}^{β{a}} β{u}^{{a}} }{\mathrm{1}β{u}^{\mathrm{2}} }{du} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\frac{β{a}}{\mathrm{2}}} β{x}^{\frac{{a}}{\mathrm{2}}} }{\mathrm{1}β{x}}.\frac{{x}^{β\frac{\mathrm{1}}{\mathrm{2}}} }{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{β\frac{{a}+\mathrm{1}}{\mathrm{2}}} β{x}^{\frac{{a}β\mathrm{1}}{\mathrm{2}}} }{\mathrm{1}β{x}}{dx} \\ $$$$\Psi\left({x}+\mathrm{1}\right)=β\gamma+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}β{t}^{{x}} }{\mathrm{1}β{t}}{dt} \\ $$$${we}\:{get}\frac{\mathrm{1}}{\mathrm{2}}\left(\:\Psi\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)β\Psi\left(\frac{\mathrm{1}β{a}}{\mathrm{2}}\right)\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\Psi\left(\mathrm{1}β\frac{\mathrm{1}β{a}}{\mathrm{2}}\right)β\Psi\left(\frac{\mathrm{1}β{a}}{\mathrm{2}}\right)\right) \\ $$$$\Psi\left(\mathrm{1}β{z}\right)β\Psi\left({z}\right)=\pi{cot}\left(\pi{z}\right) \\ $$$${we}\:{get}\:\frac{\mathrm{1}}{\mathrm{2}}\left(\pi{cot}\left(\frac{\pi\left(\mathrm{1}β{a}\right)}{\mathrm{2}}\right)\right)=\frac{\pi}{\mathrm{2}}{cot}\left(\frac{\pi}{\mathrm{2}}β\frac{{a}\pi}{\mathrm{2}}\right) \\ $$$$=\frac{\pi}{\mathrm{2}}{tan}\left(\frac{{a}\pi}{\mathrm{2}}\right) \\ $$$$ \\ $$
Answered by mathmax by abdo last updated on 23/Jun/21
$$\Phi=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sh}\left(\alpha\mathrm{t}\right)}{\mathrm{sh}\left(\mathrm{t}\right)}\mathrm{dt}\:\Rightarrow\Phi=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{e}^{\alpha\mathrm{t}} β\mathrm{e}^{β\alpha\mathrm{t}} }{\mathrm{e}^{\mathrm{t}} β\mathrm{e}^{β\mathrm{t}} }\mathrm{dt} \\ $$$$=_{\mathrm{e}^{β\mathrm{t}} \:=\mathrm{x}} \:\:β\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{x}^{β\alpha} β\mathrm{x}^{\alpha} }{\mathrm{x}^{β\mathrm{1}} β\mathrm{x}}\left(β\frac{\mathrm{dx}}{\mathrm{x}}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{x}^{β\alpha} β\mathrm{x}^{\alpha} }{\mathrm{1}β\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$$$=_{\mathrm{x}^{\mathrm{2}} \:=\mathrm{y}} \:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{y}^{β\frac{\alpha}{\mathrm{2}}} β\mathrm{y}^{\frac{\alpha}{\mathrm{2}}} }{\mathrm{1}β\mathrm{y}}\frac{\mathrm{dy}}{\mathrm{2}\sqrt{\mathrm{y}}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{y}^{β\frac{\alpha+\mathrm{1}}{\mathrm{2}}} β\mathrm{y}^{\frac{\alphaβ\mathrm{1}}{\mathrm{2}}} }{\mathrm{1}β\mathrm{y}}\mathrm{dy}\:\:=β\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}β\mathrm{y}^{β\frac{\alpha+\mathrm{1}}{\mathrm{2}}} }{\mathrm{1}β\mathrm{y}}\mathrm{dy}\:+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}β\mathrm{y}^{\frac{\alphaβ\mathrm{1}}{\mathrm{2}}} }{\mathrm{1}β\mathrm{y}}\mathrm{dy} \\ $$$$\mathrm{we}\:\mathrm{know}\:\Psi\left(\mathrm{z}+\mathrm{1}\right)=β\gamma\:+\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}β\mathrm{y}^{\mathrm{z}} }{\mathrm{1}β\mathrm{y}}\mathrm{dy}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}β\mathrm{y}^{β\frac{\alpha+\mathrm{1}}{\mathrm{2}}} }{\mathrm{1}β\mathrm{y}}\mathrm{dy}=\Psi\left(\mathrm{1}β\frac{\alpha+\mathrm{1}}{\mathrm{2}}\right)+\gamma=\Psi\left(\frac{\mathrm{1}β\alpha}{\mathrm{2}}\right)+\gamma \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}β\mathrm{y}^{\frac{\alphaβ\mathrm{1}}{\mathrm{2}}} }{\mathrm{1}β\mathrm{y}}\mathrm{dy}\:=\Psi\left(\mathrm{1}+\frac{\alphaβ\mathrm{1}}{\mathrm{2}}\right)+\gamma=\Psi\left(\frac{\alpha+\mathrm{1}}{\mathrm{2}}\right)\:\Rightarrow \\ $$$$\Phi=\frac{\mathrm{1}}{\mathrm{2}}\left\{\Psi\left(\frac{\alpha+\mathrm{1}}{\mathrm{2}}\right)β\Psi\left(\frac{\mathrm{1}β\alpha}{\mathrm{2}}\right)\right\} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{also}\:\Psi\left(\mathrm{1}β\mathrm{z}\right)β\Psi\left(\mathrm{z}\right)=\pi\mathrm{cotan}\left(\pi\mathrm{z}\right)\:\Rightarrow \\ $$$$\Psi\left(\frac{\mathrm{1}+\alpha}{\mathrm{2}}\right)β\Psi\left(\frac{\mathrm{1}β\alpha}{\mathrm{2}}\right)=\Psi\left(\mathrm{1}β\frac{\mathrm{1}β\alpha}{\mathrm{2}}\right)β\Psi\left(\frac{\mathrm{1}β\alpha}{\mathrm{2}}\right) \\ $$$$=\pi\mathrm{cotan}\left(\pi\left(\frac{\mathrm{1}β\alpha}{\mathrm{2}}\right)\right)=\pi\mathrm{cotan}\left(\frac{\pi}{\mathrm{2}}β\frac{\pi\alpha}{\mathrm{2}}\right)=\pi\mathrm{tan}\left(\frac{\pi\alpha}{\mathrm{2}}\right) \\ $$$$ \\ $$