Menu Close

prove-that-0-sin-2n-x-x-2-d-0-sin-2n-1-x-x-dx-




Question Number 94123 by  M±th+et+s last updated on 17/May/20
prove that  ∫_0 ^∞ ((sin^(2n) (x))/x^2 )d=∫_0 ^∞ ((sin^(2n−1) (x))/x)dx
$${prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{sin}^{\mathrm{2}{n}} \left({x}\right)}{{x}^{\mathrm{2}} }{d}=\int_{\mathrm{0}} ^{\infty} \frac{{sin}^{\mathrm{2}{n}−\mathrm{1}} \left({x}\right)}{{x}}{dx} \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *