Menu Close

prove-that-0-sin-3-x-ln-x-x-dx-pi-8-2-ln-3-m-n-




Question Number 154478 by mnjuly1970 last updated on 18/Sep/21
      prove that #      ∫_0 ^( ∞) (( sin^( 3) ( x ).ln( x ))/x) dx =^?  (π/8) (−2γ +ln(3)) .....■ m.n
You can't use 'macro parameter character #' in math mode0sin3(x).ln(x)xdx=?π8(2γ+ln(3))..◼m.n
Answered by ARUNG_Brandon_MBU last updated on 18/Sep/21
   ∫_0 ^∞ ((sin^3 x∙lnx)/x)dx  2isinx=(e^(ix) −e^(−ix) )  −8isin^3 x=e^(3ix) −3e^(ix) +3e^(−ix) −e^(−3ix)   sin^3 x=(3/4)sinx−(1/4)sin3x  Ω(α)=−∫_0 ^∞ ((sin^3 x)/x^α )=(1/4)∫_0 ^∞ (((sin3x)/x^α )−((3sinx)/x^α ))dx=(1/4)[((π3^(α−1) −3π)/(2Γ(α)sin((π/2)α)))]  Ω′(α)=(1/8)[((π3^(α−1) ln3(Γ(α)sin((π/2)α))−(π3^(α−1) −3π)((π/2)cos((π/2)α)Γ(α)+sin((π/2)α)Γ′(α)))/(Γ^2 (α)sin^2 ((π/2)α)))]  Ω′(1)=∫_0 ^∞ ((sin^3 x∙lnx)/x)dx=(1/8)[((πln3+2π(Γ′(1)))/(Γ^2 (1)sin^2 ((π/2))))]=(1/8)(πln3−2πγ)=(π/8)(ln3−2γ)
0sin3xlnxxdx2isinx=(eixeix)8isin3x=e3ix3eix+3eixe3ixsin3x=34sinx14sin3xΩ(α)=0sin3xxα=140(sin3xxα3sinxxα)dx=14[π3α13π2Γ(α)sin(π2α)]Ω(α)=18[π3α1ln3(Γ(α)sin(π2α))(π3α13π)(π2cos(π2α)Γ(α)+sin(π2α)Γ(α))Γ2(α)sin2(π2α)]Ω(1)=0sin3xlnxxdx=18[πln3+2π(Γ(1))Γ2(1)sin2(π2)]=18(πln32πγ)=π8(ln32γ)
Commented by mnjuly1970 last updated on 18/Sep/21
thank you so much sir Arung..
thankyousomuchsirArung..
Commented by Ar Brandon last updated on 18/Sep/21
My pleasure, Sir ��

Leave a Reply

Your email address will not be published. Required fields are marked *