Question Number 154478 by mnjuly1970 last updated on 18/Sep/21

Answered by ARUNG_Brandon_MBU last updated on 18/Sep/21
![∫_0 ^∞ ((sin^3 x∙lnx)/x)dx 2isinx=(e^(ix) −e^(−ix) ) −8isin^3 x=e^(3ix) −3e^(ix) +3e^(−ix) −e^(−3ix) sin^3 x=(3/4)sinx−(1/4)sin3x Ω(α)=−∫_0 ^∞ ((sin^3 x)/x^α )=(1/4)∫_0 ^∞ (((sin3x)/x^α )−((3sinx)/x^α ))dx=(1/4)[((π3^(α−1) −3π)/(2Γ(α)sin((π/2)α)))] Ω′(α)=(1/8)[((π3^(α−1) ln3(Γ(α)sin((π/2)α))−(π3^(α−1) −3π)((π/2)cos((π/2)α)Γ(α)+sin((π/2)α)Γ′(α)))/(Γ^2 (α)sin^2 ((π/2)α)))] Ω′(1)=∫_0 ^∞ ((sin^3 x∙lnx)/x)dx=(1/8)[((πln3+2π(Γ′(1)))/(Γ^2 (1)sin^2 ((π/2))))]=(1/8)(πln3−2πγ)=(π/8)(ln3−2γ)](https://www.tinkutara.com/question/Q154488.png)
Commented by mnjuly1970 last updated on 18/Sep/21

Commented by Ar Brandon last updated on 18/Sep/21
My pleasure, Sir ��