Menu Close

Prove-that-0-sin-x-e-x-1-dx-1-2-picoth-pi-1-solution-0-e-x-sin-x-1-e-x-dx-0-si




Question Number 169115 by mnjuly1970 last updated on 24/Apr/22
          Prove    that                 Ω= ∫_0 ^( ∞) (( sin(x))/(e^( x)  −1)) dx =^?  (1/2) ( πcoth(π) −1 )        −−−  solution −−−         Ω= ∫_0 ^( ∞) (( e^( −x) .sin(x))/(1− e^( −x) )) dx=∫_0 ^( ∞) (sin(x) Σ_(n=1) ^∞ e^( −nx) )dx             = Σ_(n=1) ^∞ ∫_0 ^( ∞)  e^( −nx) .sin(x)dx             =  Σ_(n=1) ^∞ (( 1)/(1 + n^( 2) ))  =_(function) ^(Upsilon)  (1/2) ( πcoth(π) − 1)       ■ m.n                   Note : Υ (s )= Σ_(n=1) ^∞ (1/( s^( 2)  + n^( 2) )) = (1/(2s))( πcoth(πs) −(1/(2s )))                        where :   s ∈ C − { ki∈ Z :  k≠ 0 }
ProvethatΩ=0sin(x)ex1dx=?12(πcoth(π)1)solutionΩ=0ex.sin(x)1exdx=0(sin(x)n=1enx)dx=n=10enx.sin(x)dx=n=111+n2=Upsilonfunction12(πcoth(π)1)◼m.nNote:Υ(s)=n=11s2+n2=12s(πcoth(πs)12s)where:sC{kiZ:k0}

Leave a Reply

Your email address will not be published. Required fields are marked *