Question Number 159540 by mnjuly1970 last updated on 18/Nov/21
$$ \\ $$$$\:\: \\ $$$$\:\:\:\:\:{prove}\:\:{that}\:: \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}\::=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{sin}\left(\sqrt{{x}}\:\right).{sin}\left(\frac{\pi}{\mathrm{3}}\:+\sqrt{{x}}\:\right).{sin}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}+\sqrt{{x}}\:\right).{ln}\left(\frac{\mathrm{1}}{{x}^{\:\mathrm{2}} }\:\right)}{{x}}{dx}\overset{?} {=}\:\pi.\left(\gamma\:+\:{ln}\left(\mathrm{3}\right)\:\right)\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:−−−−−−−−−−\:\:\:{m}.{n} \\ $$$$ \\ $$
Answered by mindispower last updated on 19/Nov/21
$$=\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({y}\right){sin}\left(\frac{\pi}{\mathrm{3}}+{y}\right)}{{y}}.\mathrm{2}{dy} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({y}\right)}{{y}}.\frac{\mathrm{1}}{\mathrm{2}}{dy}+\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({y}\right){cos}\left({y}\right)}{{y}}.\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}.\frac{\pi}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left(\mathrm{2}{y}\right)}{\mathrm{2}{y}}{d}\left(\mathrm{2}{y}\right) \\ $$$$=\frac{\pi}{\mathrm{4}}+\frac{\sqrt{\mathrm{3}}\pi}{\mathrm{8}} \\ $$