Menu Close

prove-that-0-sin-x-sinh-x-dx-pi-2-tanh-pi-2-




Question Number 173424 by mnjuly1970 last updated on 11/Jul/22
      prove  that       ∫_0 ^( ∞) (( sin(x))/(sinh(x))) dx = (π/2)tanh((π/2))
provethat0sin(x)sinh(x)dx=π2tanh(π2)
Answered by Mathspace last updated on 11/Jul/22
Ψ=∫_0 ^∞  ((sinx)/(sh(x)))dx=2∫_0 ^∞  ((sinx)/(e^x −e^(−x) ))dx  =2∫_0 ^∞  ((e^(−x) sinx)/(1−e^(−2x) ))dx  =2∫_0 ^∞ e^(−x) sinxΣ_(n=0) ^∞ e^(−2nx) dx  =2Σ_(n=0) ^∞ ∫_0 ^∞ e^(−(2n+1)x) sinx dx  but ∫_0 ^∞  e^(−(2n+1)x) sinxdx  =Im(∫_0 ^∞  e^(−(n+1)x+ix) dx)  and ∫_0 ^∞ e^(−(n+1)+i)x) dx  =(1/(−(n+1)+i))e^(−(n+1)+i)x) ]_0 ^∞   =(1/(n+1−i))=((n+1+i)/((n+1)^2 +1)) ⇒  Im(∫_0 ^∞ ....)=(1/((n+1)^2 +1)) ⇒  Ψ=2Σ_(n=0) ^∞ (1/((n+1)^2 +1))  =2Σ_(n=1) ^∞ (1/(n^2 +1))  Σ_(n=0) ^∞ (1/(n^2 +1))=Σ_(n=0) ^∞ (1/((n+i)(n−i)))  =((Ψ(i)−Ψ(−i))/(2i)) after we use  Ψ(z)−Ψ(1−z)=πcotan(πz)  or we can developp cos(αx)  at fourier serie to find the value...
Ψ=0sinxsh(x)dx=20sinxexexdx=20exsinx1e2xdx=20exsinxn=0e2nxdx=2n=00e(2n+1)xsinxdxbut0e(2n+1)xsinxdx=Im(0e(n+1)x+ixdx)and0e(n+1)+i)xdx=1(n+1)+ie(n+1)+i)x]0=1n+1i=n+1+i(n+1)2+1Im(0.)=1(n+1)2+1Ψ=2n=01(n+1)2+1=2n=11n2+1n=01n2+1=n=01(n+i)(ni)=Ψ(i)Ψ(i)2iafterweuseΨ(z)Ψ(1z)=πcotan(πz)orwecandeveloppcos(αx)atfourierserietofindthevalue
Commented by mnjuly1970 last updated on 11/Jul/22
grateful sir
gratefulsir
Commented by Tawa11 last updated on 13/Jul/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *