Question Number 86830 by Ar Brandon last updated on 31/Mar/20
$${Prove}\:\:{that}\:\int_{\mathrm{0}} ^{\infty} \frac{{sin}\:{x}}{{x}}{dx}\:=\:\frac{\pi}{\mathrm{2}} \\ $$
Answered by mind is power last updated on 31/Mar/20
$${let}\:{f}\left({z}\right)=\frac{{e}^{{iz}} }{{z}} \\ $$$$\forall\epsilon,{R}>\mathrm{0}\:\:\:\epsilon<{R}\:{we}\:{have} \\ $$$$\int_{{C}_{\epsilon} } {f}\left({z}\right){dz}=\mathrm{2}{i}\pi{Res}\left({f},\mathrm{0}\right) \\ $$$$\left.{C}_{\epsilon} =\right]−{R},−\epsilon\left[\cup\left[\epsilon{e}^{{i}\theta} ,\theta\in\left[−\pi,\mathrm{0}\right]\right]\right]\epsilon,+{R}\left[\:\cup{Re}^{{i}\theta} =\mathrm{2}{i}\pi\right. \\ $$$$\int_{\epsilon} ^{{R}} \left(−{f}\left(−{z}\right)+{f}\left({z}\right)\right){dz}=\mathrm{2}{i}\pi−\int_{−\pi} ^{\mathrm{0}} {f}\left(\epsilon{e}^{{i}\theta} \right).{i}\epsilon{e}^{{i}\theta} {d}\theta\left(\int_{\mathrm{0}} ^{\pi} {ie}^{{iRcos}\left(\theta\right)−{Rsin}\left(\theta\right)} \right. \\ $$$$\int_{\epsilon} ^{{R}} \mathrm{2}{i}\frac{{sin}\left({x}\right)}{{x}}{dx}=\mathrm{2}{i}\pi−\int_{\mathrm{0}} ^{\pi} {i}\left(\frac{{e}^{{i}\epsilon\left({cos}\left(\theta\right)+{isin}\left(\theta\right)\right)} }{\epsilon{e}^{{i}\theta} }\right).\epsilon{e}^{{i}\theta} {d}\theta−\int_{\mathrm{0}} ^{\pi} {ie}^{{iRcos}\left(\theta\right)−{Rsin}\left(\theta\right)} {d}\theta \\ $$$$\mathrm{2}{i}\int_{\mathrm{0}} ^{{R}} \frac{{sin}\left({x}\right)}{{x}}{dx}=\mathrm{2}{i}\pi−\underset{\epsilon\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{\mathrm{0}} ^{\pi} {ie}^{{i}\epsilon{e}^{{i}\theta} } {d}\theta−{i}\int_{\mathrm{0}} ^{\pi} {e}^{{iRcos}\left(\theta\right)−{Rsin}\left(\theta\right)} {d}\theta={i}\pi \\ $$$$\Rightarrow\mathrm{2}{i}\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({z}\right)}{{z}}{dz}={i}\pi\Rightarrow\int_{\mathrm{0}} ^{+\infty} \frac{{sin}\left({z}\right)}{{z}}=\frac{\pi}{\mathrm{2}} \\ $$$$ \\ $$
Commented by Ar Brandon last updated on 01/Apr/20
$${Thanks}\:\:{Sir},\:\:{but}\:\:{i}\:\:{think}\:\:{you}\:\:{applied}\:\:{a}\:\:{theory}\:\:{which}\:\:{i}\:\:{don}'{t}\:\:{yet}\:\:{know}. \\ $$$${Can}\:\:{you}\:\:{please}\:\:{emphasize}\:\:{more}\:\:{on}\:\:{this}? \\ $$
Commented by mathmax by abdo last updated on 01/Apr/20
$${sir}\:{ar}\:{brondon}\:{try}\:{to}\:{study}\:{complex}\:{anslysis}\:{step}\:{by}\:{step}\:{and} \\ $$$${that}\:{the}\:{cocept}\:{bevome}\:{eazy}\:{for}\:{you}… \\ $$
Commented by Ar Brandon last updated on 02/Apr/20
$${OK}\:\:{thanks}\:\:{so}\:\:{much}. \\ $$
Answered by TANMAY PANACEA. last updated on 31/Mar/20
$${f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}×{e}^{−{ax}} {dx} \\ $$$$\frac{{df}\left({a}\right)}{{da}}=\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}×{e}^{−{ax}} ×−{x}\:{dx} \\ $$$$\left(−\mathrm{1}\right)\frac{{df}}{{da}}=\int_{\mathrm{0}} ^{\infty} {e}^{−{ax}} ×{sinx}\:{dx} \\ $$$$\:\:{q}=\int_{\mathrm{0}} ^{\infty} {e}^{−{ax}} ×{sinx}\:{dx} \\ $$$${p}=\int_{\mathrm{0}} ^{\infty} {e}^{−{ax}} ×{cosx}\:{dx} \\ $$$${p}+{iq}=\int_{\mathrm{0}} ^{\infty} {e}^{−{ax}} ×{e}^{{ix}} {dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} {e}^{−{x}\left({a}−{i}\right)} {dx} \\ $$$$=\mid\frac{{e}^{−{x}\left({a}−{i}\right)} }{{a}−{i}}\mid_{\mathrm{0}} ^{\infty} =\frac{\mathrm{1}}{{a}−{i}}=\frac{{a}+{i}}{{a}^{\mathrm{2}} +\mathrm{1}} \\ $$$${so}\:{q}=\int_{\mathrm{0}} ^{\infty} {e}^{−{ax}} {sinx}\:{dx}=\frac{\mathrm{1}}{{a}^{\mathrm{2}} +\mathrm{1}} \\ $$$${now}\:\frac{−{df}\left({a}\right)}{{da}}=\frac{\mathrm{1}}{{a}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\int{df}=\int\frac{−{da}}{{a}^{\mathrm{2}} +\mathrm{1}} \\ $$$${f}\left({a}\right)=−{tan}^{−\mathrm{1}} \left({a}\right)+{c} \\ $$$${now}\:{look}\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}×{e}^{−{ax}} \:{dx} \\ $$$${when}\:{a}\rightarrow\infty\:\:{then}\:{e}^{−{ax}} \rightarrow\mathrm{0}\:\:\:{so}\:{f}\left({a}\right)=\mathrm{0} \\ $$$${hence}.. \\ $$$$\mathrm{0}=−{tan}^{−\mathrm{1}} \left(\infty\right)+{c} \\ $$$${c}=\frac{\pi}{\mathrm{2}} \\ $$$${f}\left({a}\right)=−{tan}^{−\mathrm{1}} \left({a}\right)+\frac{\pi}{\mathrm{2}} \\ $$$${f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}×{e}^{−{ax}} {dx}=−{tan}^{−\mathrm{1}} \left({a}\right)+\frac{\pi}{\mathrm{2}} \\ $$$$\boldsymbol{{now}}\:\boldsymbol{{look}} \\ $$$$\boldsymbol{{f}}\left(\mathrm{0}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}×{e}^{−\mathrm{0}} \:{dx}=\frac{\pi}{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}=\frac{\pi}{\mathrm{2}} \\ $$
Commented by Ar Brandon last updated on 01/Apr/20
$${got}\:\:{it},\:\:{thanks} \\ $$$$ \\ $$