Menu Close

prove-that-0-sinx-x-dx-is-divergent-




Question Number 33170 by prof Abdo imad last updated on 11/Apr/18
prove that  ∫_0 ^∞  ((∣sinx∣)/x) dx is divergent.
provethat0sinxxdxisdivergent.
Commented by prof Abdo imad last updated on 13/Apr/18
∫_0 ^∞    ((∣sinx∣)/x)dx  =lim_(n→+∞)   A_n   with  A_n   = ∫_0 ^(nπ)   ((∣sinx∣)/x)dx  but   A_n  = Σ_(k=0) ^n   ∫_(kπ) ^((k+1)π)    ((∣sinx∣)/x)dx    =_(x=kπ +t)    Σ_(k=0) ^n   ∫_0 ^π    ((sint)/(kπ +t)) dt   but  0≤t≤π ⇒ kπ ≤ kπ +t ≤(k+1)π ⇒  (1/((k+1)π)) ≤  (1/(kπ+t)) ≤  (1/(kπ)) ⇒ ((sint)/(kπ+t)) ≥ ((sint)/((k+1)π))  ∀ t∈[0,π]  ⇒ ∫_0 ^π    ((sint)/(kπ+t)) dt  ≥ (1/((k+1)π)) ∫_0 ^π  sintdt = (2/((k+1)π)) ⇒  A_n   ≥ (2/π) Σ_(k=0) ^n   (1/(k+1)) ⇒ A_n  ≥ (2/π) Σ_(k=1) ^(n+1)  (1/k) ⇒  A_n  ≥ (2/π) H_(n+1)  _(n→+∞)  →+∞ so lim_(n→+∞)  A_n  =+∞  and the integral is divergent.
0sinxxdx=limn+AnwithAn=0nπsinxxdxbutAn=k=0nkπ(k+1)πsinxxdx=x=kπ+tk=0n0πsintkπ+tdtbut0tπkπkπ+t(k+1)π1(k+1)π1kπ+t1kπsintkπ+tsint(k+1)πt[0,π]0πsintkπ+tdt1(k+1)π0πsintdt=2(k+1)πAn2πk=0n1k+1An2πk=1n+11kAn2πHn+1n++solimn+An=+andtheintegralisdivergent.

Leave a Reply

Your email address will not be published. Required fields are marked *