prove-that-0-sinx-x-dx-is-divergent- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 33170 by prof Abdo imad last updated on 11/Apr/18 provethat∫0∞∣sinx∣xdxisdivergent. Commented by prof Abdo imad last updated on 13/Apr/18 ∫0∞∣sinx∣xdx=limn→+∞AnwithAn=∫0nπ∣sinx∣xdxbutAn=∑k=0n∫kπ(k+1)π∣sinx∣xdx=x=kπ+t∑k=0n∫0πsintkπ+tdtbut0⩽t⩽π⇒kπ⩽kπ+t⩽(k+1)π⇒1(k+1)π⩽1kπ+t⩽1kπ⇒sintkπ+t⩾sint(k+1)π∀t∈[0,π]⇒∫0πsintkπ+tdt⩾1(k+1)π∫0πsintdt=2(k+1)π⇒An⩾2π∑k=0n1k+1⇒An⩾2π∑k=1n+11k⇒An⩾2πHn+1n→+∞→+∞solimn→+∞An=+∞andtheintegralisdivergent. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-lim-n-n-n-1-t-n-1-3-t-dt-Next Next post: Find-n-1-ln-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.