Menu Close

prove-that-0-t-x-1-e-t-1-dt-x-x-with-x-n-1-1-n-x-and-x-0-t-x-1-e-t-dt-x-gt-1-




Question Number 27345 by abdo imad last updated on 05/Jan/18
prove that  ∫_0 ^∞   (t^(x−1) /(e^t −1))dt  =ξ(x)Γ(x)  with ξ(x)= Σ_(n=1) ^∝  (1/n^x )   and Γ(x)=∫_0 ^∞  t^(x−1)  e^(−t) dt  ( x>1)
provethat0tx1et1dt=ξ(x)Γ(x)withξ(x)=n=11nxandΓ(x)=0tx1etdt(x>1)
Commented by abdo imad last updated on 07/Jan/18
∫_0 ^∝   (t^(x−1) /(e^t  −1))dt = ∫_0 ^∝  ((e^(−t)  t^(x−1) )/(1−e^(−t) ))dt  = ∫_0 ^∝ (Σ_(n=0) ^∝  e^(−nt) )e^(−t) t^(x−1) dt  =Σ_(n=0) ^∝ (∫_0 ^∝  e^(−(n+1)t)  t^(x−1) dt)   the ch. (n+1)t=u give  ∫_0 ^∝   e^(−(n+1)t)  t^(x−1) dt= (1/(n+1)) ∫_0 ^∝  e^(−u) ((u/(n+1)))^(x−1) du  = (1/((n+1)^x )) ∫_0 ^∝  e^(−u)  u^(x−1)  du= ((Γ(x))/((n+1)^x ))  ⇒ ∫_0 ^∝   (t^(x−1) /(e^t −1))dt= Σ_(n=0) ^∝ (((Γ(x))/((n+1)^x )))=(Σ_(n=1) ^∝  (1/n^x ))Γ(x)  =ξ(x).Γ(x).
0tx1et1dt=0ettx11etdt=0(n=0ent)ettx1dt=n=0(0e(n+1)ttx1dt)thech.(n+1)t=ugive0e(n+1)ttx1dt=1n+10eu(un+1)x1du=1(n+1)x0euux1du=Γ(x)(n+1)x0tx1et1dt=n=0(Γ(x)(n+1)x)=(n=11nx)Γ(x)=ξ(x).Γ(x).

Leave a Reply

Your email address will not be published. Required fields are marked *