Menu Close

prove-that-0-tanh-a-x-tanh-b-x-dx-b-1-2-a-1-2-2-m-n-july-1970-




Question Number 115920 by mnjuly1970 last updated on 29/Sep/20
                    prove   that ::      ∫_0 ^( ∞) (tanh^a (x) −tanh^b (x))dx         =^(???)    ((ψ(((b+1)/2))−ψ(((a+1)/2)))/2)            m.n.july.1970
$$\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:{prove}\:\:\:{that}\::: \\ $$$$\: \\ $$$$\:\int_{\mathrm{0}} ^{\:\infty} \left({tanh}^{{a}} \left({x}\right)\:−{tanh}^{{b}} \left({x}\right)\right){dx}\: \\ $$$$\:\:\:\:\:\:\overset{???} {=}\:\:\:\frac{\psi\left(\frac{{b}+\mathrm{1}}{\mathrm{2}}\right)−\psi\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:{m}.{n}.{july}.\mathrm{1970} \\ $$$$\: \\ $$
Answered by mathmax by abdo last updated on 29/Sep/20
I =ϕ(a)−ϕ(b) with ϕ(a) =∫_0 ^∞  th^a (x)dx  =∫_0 ^∞  (((shx)/(chx)))^a dx =∫_0 ^∞  (((e^x −e^(−x) )/(e^x +e^(−x) )))^a dx  =∫_0 ^∞ (((1−e^(−2x) )/(1+e^(−2x) )))^a dx  =_(e^(2x)  =t)    ∫_1 ^(+∞) (((1−t^(−1) )/(1+t^(−1) )))^a (dt/(2t))  =(1/2)∫_1 ^∞  (((t−1)/(t+1)))^a  (dt/t)  changement ((t−1)/(t+1)) =u givet−1=ut+u ⇒  (1−u)t =1+u ⇒t =((1+u)/(1−u)) ⇒(dt/du) =((1−u−(1+u)(−1))/((1−u)^2 ))=(2/((1−u)^2 ))  ∫_1 ^(+∞) (1/t)(((t−1)/(t+1)))^a dt =∫_0 ^1 u^a  ×((1−u)/(1+u))×((2du)/((1−u)^2 ))  =2 ∫_0 ^1  (u^a /(1−u^2 ))du =2 ∫_0 ^1 u^a (Σ_(n=0) ^∞  u^(2n) )du  =2 Σ_(n=0) ^∞  ∫_0 ^1  u^(2n+a)  du =2 Σ_(n=0) ^∞  (1/(2n+a+1)) ⇒  ϕ(a) =Σ_(n=0) ^∞  (1/(2n+1+a)) ⇒I =Σ_(n=0) ^∞  (1/(2n+1+a))−Σ_(n=0) ^∞  (1/(2n+1+b))  =(1/2)Σ_(n=0) ^∞  (1/(n+((a+1)/2)))−(1/2)Σ_(n=0) ^∞  (1/(n+((b+1)/2)))  so if we take ψ(λ) =Σ_(n=0) ^∞  (1/(n+λ))  we get I =(1/2)(ψ(((a+1)/2))−ψ(((b+1)/2)))
$$\mathrm{I}\:=\varphi\left(\mathrm{a}\right)−\varphi\left(\mathrm{b}\right)\:\mathrm{with}\:\varphi\left(\mathrm{a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\mathrm{th}^{\mathrm{a}} \left(\mathrm{x}\right)\mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\left(\frac{\mathrm{shx}}{\mathrm{chx}}\right)^{\mathrm{a}} \mathrm{dx}\:=\int_{\mathrm{0}} ^{\infty} \:\left(\frac{\mathrm{e}^{\mathrm{x}} −\mathrm{e}^{−\mathrm{x}} }{\mathrm{e}^{\mathrm{x}} +\mathrm{e}^{−\mathrm{x}} }\right)^{\mathrm{a}} \mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}−\mathrm{e}^{−\mathrm{2x}} }{\mathrm{1}+\mathrm{e}^{−\mathrm{2x}} }\right)^{\mathrm{a}} \mathrm{dx}\:\:=_{\mathrm{e}^{\mathrm{2x}} \:=\mathrm{t}} \:\:\:\int_{\mathrm{1}} ^{+\infty} \left(\frac{\mathrm{1}−\mathrm{t}^{−\mathrm{1}} }{\mathrm{1}+\mathrm{t}^{−\mathrm{1}} }\right)^{\mathrm{a}} \frac{\mathrm{dt}}{\mathrm{2t}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{1}} ^{\infty} \:\left(\frac{\mathrm{t}−\mathrm{1}}{\mathrm{t}+\mathrm{1}}\right)^{\mathrm{a}} \:\frac{\mathrm{dt}}{\mathrm{t}}\:\:\mathrm{changement}\:\frac{\mathrm{t}−\mathrm{1}}{\mathrm{t}+\mathrm{1}}\:=\mathrm{u}\:\mathrm{givet}−\mathrm{1}=\mathrm{ut}+\mathrm{u}\:\Rightarrow \\ $$$$\left(\mathrm{1}−\mathrm{u}\right)\mathrm{t}\:=\mathrm{1}+\mathrm{u}\:\Rightarrow\mathrm{t}\:=\frac{\mathrm{1}+\mathrm{u}}{\mathrm{1}−\mathrm{u}}\:\Rightarrow\frac{\mathrm{dt}}{\mathrm{du}}\:=\frac{\mathrm{1}−\mathrm{u}−\left(\mathrm{1}+\mathrm{u}\right)\left(−\mathrm{1}\right)}{\left(\mathrm{1}−\mathrm{u}\right)^{\mathrm{2}} }=\frac{\mathrm{2}}{\left(\mathrm{1}−\mathrm{u}\right)^{\mathrm{2}} } \\ $$$$\int_{\mathrm{1}} ^{+\infty} \frac{\mathrm{1}}{\mathrm{t}}\left(\frac{\mathrm{t}−\mathrm{1}}{\mathrm{t}+\mathrm{1}}\right)^{\mathrm{a}} \mathrm{dt}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{u}^{\mathrm{a}} \:×\frac{\mathrm{1}−\mathrm{u}}{\mathrm{1}+\mathrm{u}}×\frac{\mathrm{2du}}{\left(\mathrm{1}−\mathrm{u}\right)^{\mathrm{2}} } \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{u}^{\mathrm{a}} }{\mathrm{1}−\mathrm{u}^{\mathrm{2}} }\mathrm{du}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{u}^{\mathrm{a}} \left(\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\mathrm{u}^{\mathrm{2n}} \right)\mathrm{du} \\ $$$$=\mathrm{2}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{u}^{\mathrm{2n}+\mathrm{a}} \:\mathrm{du}\:=\mathrm{2}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{2n}+\mathrm{a}+\mathrm{1}}\:\Rightarrow \\ $$$$\varphi\left(\mathrm{a}\right)\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{2n}+\mathrm{1}+\mathrm{a}}\:\Rightarrow\mathrm{I}\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{2n}+\mathrm{1}+\mathrm{a}}−\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{2n}+\mathrm{1}+\mathrm{b}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}+\frac{\mathrm{a}+\mathrm{1}}{\mathrm{2}}}−\frac{\mathrm{1}}{\mathrm{2}}\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}+\frac{\mathrm{b}+\mathrm{1}}{\mathrm{2}}} \\ $$$$\mathrm{so}\:\mathrm{if}\:\mathrm{we}\:\mathrm{take}\:\psi\left(\lambda\right)\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}+\lambda}\:\:\mathrm{we}\:\mathrm{get}\:\mathrm{I}\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\psi\left(\frac{\mathrm{a}+\mathrm{1}}{\mathrm{2}}\right)−\psi\left(\frac{\mathrm{b}+\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$
Commented by mnjuly1970 last updated on 29/Sep/20
thank you sir
$${thank}\:{you}\:{sir} \\ $$
Commented by Bird last updated on 29/Sep/20
you are welcome sir
$${you}\:{are}\:{welcome}\:{sir} \\ $$
Answered by mnjuly1970 last updated on 29/Sep/20
Answered by mnjuly1970 last updated on 29/Sep/20
Answered by mnjuly1970 last updated on 29/Sep/20

Leave a Reply

Your email address will not be published. Required fields are marked *