Prove-that-0-tln-sint-dt-2-2-ln-2- Tinku Tara June 4, 2023 Coordinate Geometry 0 Comments FacebookTweetPin Question Number 146775 by Willson last updated on 15/Jul/21 Provethat∫0πtln(sint)dt=−π22ln(2) Answered by ArielVyny last updated on 15/Jul/21 ∫0πt(−ln2−∑n⩾1cos(2nt)n)dt−ln(2)∫0πtdt−∫0π(t∑n⩾1cos(2nt)n)dt−π22ln2accordingthat∫0πt∑n⩾1cos(2nt)ndt=0∫0πtln(sint)dt=−π2ln22 Answered by Olaf_Thorendsen last updated on 15/Jul/21 Ω=∫0πtln(sint)dt(1)Letu=π−tΩ=∫0π(π−u)ln(sinu)du(2)(1)+(2)2:Ω=π2∫0πln(sint)dt(3)Ω=π2∫0π2ln(sint)dt+π2∫π2πln(sint)dtLetu=t−π2Ω=π2∫0π2ln(sint)dt+π2∫0π2ln(cosu)du(4)Lett=2u(3):Ω=π∫0π2ln(sin(2u))duΩ=π∫0π2ln2+ln(sinu)+ln(cosu)du(5)(5)−2×(4)w:−Ω=π∫0π2ln2du=π22ln(2)⇒Ω=−π22ln(2) Answered by mathmax by abdo last updated on 16/Jul/21 Υ=∫0πtlog(sint)dt⇒Υ=∫0π2tlog(sint)dt+∫π2πtlog(sint)dt(→t=π2+z)=∫0π2tlog(sint)dt[+∫0π2(π2+z)log(cost)dt=π2∫0π2log(cost)dt+∫0π2t(log(sint)+log(cost))dt=−π24log2+∫0π2tlog(sin(2t)2)dt=−π24log2+∫0π2tlog(sin(2t)dt(→2t=u)−log2∫0π2tdt=−π24log2+∫0πu2log(sinu)du2−log2×π28=−3π28log2+Υ4⇒(1−14)Υ=−3π28log2⇒34Υ=−3π28log2⇒Υ=−π22log2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 3-5x-58-Next Next post: Find-the-modulus-of-a-complex-number-Z-cos-40-i-sin-20-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.