Menu Close

Prove-that-0-tln-sint-dt-2-2-ln-2-




Question Number 146775 by Willson last updated on 15/Jul/21
Prove that     ∫^( 𝛑) _( 0) tln(sint)dt= −(𝛑^2 /2)ln(2)
Provethat0πtln(sint)dt=π22ln(2)
Answered by ArielVyny last updated on 15/Jul/21
∫_0 ^π t(−ln2−Σ_(n≥1) ((cos(2nt))/n))dt  −ln(2)∫_0 ^π tdt−∫_0 ^π (tΣ_(n≥1) ((cos(2nt))/n))dt  −(π^2 /2)ln2  according that ∫_0 ^π tΣ_(n≥1) ((cos(2nt))/n)dt=0  ∫_0 ^π tln(sint)dt=−((π^2 ln2)/2)
0πt(ln2n1cos(2nt)n)dtln(2)0πtdt0π(tn1cos(2nt)n)dtπ22ln2accordingthat0πtn1cos(2nt)ndt=00πtln(sint)dt=π2ln22
Answered by Olaf_Thorendsen last updated on 15/Jul/21
Ω = ∫_0 ^π tln(sint) dt    (1)  Let u = π−t  Ω = ∫_0 ^π (π−u)ln(sinu) du    (2)  (((1)+(2))/2) : Ω = (π/2)∫_0 ^π ln(sint)dt   (3)  Ω = (π/2)∫_0 ^(π/2) ln(sint)dt+(π/2)∫_(π/2) ^π ln(sint)dt  Let u = t−(π/2)  Ω = (π/2)∫_0 ^(π/2) ln(sint)dt+(π/2)∫_0 ^(π/2) ln(cosu)du (4)    Let t = 2u  (3) : Ω = π∫_0 ^(π/2) ln(sin(2u)) du  Ω = π∫_0 ^(π/2) ln2+ln(sinu)+ln(cosu) du  (5)    (5)−2×(4)w :  −Ω = π∫_0 ^(π/2) ln2 du = (π^2 /2)ln(2)  ⇒ Ω = −(π^2 /2)ln(2)
Ω=0πtln(sint)dt(1)Letu=πtΩ=0π(πu)ln(sinu)du(2)(1)+(2)2:Ω=π20πln(sint)dt(3)Ω=π20π2ln(sint)dt+π2π2πln(sint)dtLetu=tπ2Ω=π20π2ln(sint)dt+π20π2ln(cosu)du(4)Lett=2u(3):Ω=π0π2ln(sin(2u))duΩ=π0π2ln2+ln(sinu)+ln(cosu)du(5)(5)2×(4)w:Ω=π0π2ln2du=π22ln(2)Ω=π22ln(2)
Answered by mathmax by abdo last updated on 16/Jul/21
Υ=∫_0 ^π  t log(sint)dt  ⇒Υ=∫_0 ^(π/2)  tlog(sint)dt +∫_(π/2) ^π  tlog(sint)dt(→t=(π/2)+z)  =∫_0 ^(π/2)  tlog(sint)dt[+∫_0 ^(π/2)  ((π/2)+z)log(cost)dt  =(π/2)∫_0 ^(π/2)  log(cost)dt +∫_0 ^(π/2)  t(log(sint)+log(cost))dt  =−(π^2 /4)log2 +∫_0 ^(π/2)  tlog(((sin(2t))/2))dt  =−(π^2 /4)log2 +∫_0 ^(π/2)  tlog(sin(2t)dt(→2t=u)−log2∫_0 ^(π/2)  tdt  =−(π^2 /4)log2 +∫_0 ^π (u/2)log(sinu)(du/2)−log2×(π^2 /8)  =−((3π^2 )/8)log2 +(Υ/4) ⇒(1−(1/4))Υ=−((3π^2 )/8)log2 ⇒  (3/4)Υ=−((3π^2 )/8)log2 ⇒Υ=−(π^2 /2)log2
Υ=0πtlog(sint)dtΥ=0π2tlog(sint)dt+π2πtlog(sint)dt(t=π2+z)=0π2tlog(sint)dt[+0π2(π2+z)log(cost)dt=π20π2log(cost)dt+0π2t(log(sint)+log(cost))dt=π24log2+0π2tlog(sin(2t)2)dt=π24log2+0π2tlog(sin(2t)dt(2t=u)log20π2tdt=π24log2+0πu2log(sinu)du2log2×π28=3π28log2+Υ4(114)Υ=3π28log234Υ=3π28log2Υ=π22log2

Leave a Reply

Your email address will not be published. Required fields are marked *