Menu Close

Prove-that-0-x-6-dx-a-4-x-4-2-3pi-2-16a-a-gt-0-




Question Number 25183 by ajfour last updated on 06/Dec/17
Prove that  ∫_0 ^(  ∞) ((x^6 dx)/((a^4 +x^4 )^2 ))= ((3π(√2))/(16a))   ,  (a>0) .
$${Prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\:\:\infty} \frac{{x}^{\mathrm{6}} {dx}}{\left({a}^{\mathrm{4}} +{x}^{\mathrm{4}} \right)^{\mathrm{2}} }=\:\frac{\mathrm{3}\pi\sqrt{\mathrm{2}}}{\mathrm{16}{a}}\:\:\:,\:\:\left({a}>\mathrm{0}\right)\:. \\ $$
Commented by prakash jain last updated on 05/Dec/17
should the answer be ((3π(√2))/(16a))
$$\mathrm{should}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{be}\:\frac{\mathrm{3}\pi\sqrt{\mathrm{2}}}{\mathrm{16}{a}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *