Menu Close

prove-that-0-x-e-t-2-dt-pi-2-e-x-2-pi-0-e-x-2-t-2-1-t-2-dt-with-x-gt-0-




Question Number 31105 by abdo imad last updated on 02/Mar/18
prove that ∫_0 ^x    e^(−t^2 ) dt =((√π)/2) −(e^(−x^2 ) /( (√π))) ∫_0 ^∞   (e^(−x^2 t^2 ) /(1+t^2 )) dt with x>0
provethat0xet2dt=π2ex2π0ex2t21+t2dtwithx>0
Commented by abdo imad last updated on 05/Mar/18
let put f(x)= ∫_0 ^∞   (e^(−x^2 t^2 ) /(1+t^2 ))dt  with x>0 after verifying the  conditions of derivality of f on ]0,+∞[ we get  f^′ (x)= −∫_0 ^∞ ((2t^2 x e^(−x^2 t^2 ) )/(1+t^2 ))dt= −2x ∫_0 ^∞ ((t^2  e^(−x^2 t^2 ) )/(1+t^2 ))dt  =−2x∫_0 ^∞ (((1+t^2  −1)e^(−x^2 t^2 ) )/(1+t^2 ))dt=−2x ∫_0 ^∞ e^(−x^2 t^2 ) dt +2x∫_0 ^∞  (e^(−x^2 t^2 ) /(1+t^2 ))dt  =2x f(x)−2x ∫_0 ^∞ e^(−(xt)^2 ) dt=2xf(x)−2x ∫_0 ^∞  e^(−u^2 ) (du/x)  =2xf(x)−(√π) ⇒ f^′ (x) −2xf(x)=−(√π)  e.h⇒f^′  −2xf=0⇒(f^′ /f)=2x⇒ln∣f∣= x^2  ⇒f(x)=k e^x^2    mvc method⇒k^′  e^x^2   + 2kx e^x^2   −2xk e^x^2  =−(√π) ⇒  k^′ e^x^2   =−(√π) ⇒k^′ =−(√π) e^(−x^2 )  ⇒k(x)= ∫_0 ^x −(√π) e^(−t^2 ) dt +λ  λ=k(0)=f(0)=(π/2) ⇒k(x)=(π/2) −(√π) ∫_0 ^x  e^(−t^2 ) dt ⇒  ∫_0 ^∞   (e^(−x^2 t^2 ) /(1+t^2 ))dt=((π/2) −(√π) ∫_0 ^x  e^(−t^2 ) dt)e^x^2   ⇒  e^(−x^2  )   ∫_0 ^∞   (e^(−x^2 t^2 ) /(1+t^2 ))dt= (π/2) −(√π) ∫_0 ^x  e^(−t^2 ) dt ⇒  (√π)  ∫_0 ^x   e^(−t^2 ) dt= (π/2) − e^(−x^2 )  ∫_0 ^∞   (e^(−x^2 t^2 ) /(1+t^2 ))dt ⇒  ∫_0 ^x   e^(−t^2 ) dt= ((√π)/2) −(e^(−x^2 ) /( (√π))) ∫_0 ^∞    (e^(−x^2 t^2 ) /(1+t^2 ))dt  .
letputf(x)=0ex2t21+t2dtwithx>0afterverifyingtheconditionsofderivalityoffon]0,+[wegetf(x)=02t2xex2t21+t2dt=2x0t2ex2t21+t2dt=2x0(1+t21)ex2t21+t2dt=2x0ex2t2dt+2x0ex2t21+t2dt=2xf(x)2x0e(xt)2dt=2xf(x)2x0eu2dux=2xf(x)πf(x)2xf(x)=πe.hf2xf=0ff=2xlnf∣=x2f(x)=kex2mvcmethodkex2+2kxex22xkex2=πkex2=πk=πex2k(x)=0xπet2dt+λλ=k(0)=f(0)=π2k(x)=π2π0xet2dt0ex2t21+t2dt=(π2π0xet2dt)ex2ex20ex2t21+t2dt=π2π0xet2dtπ0xet2dt=π2ex20ex2t21+t2dt0xet2dt=π2ex2π0ex2t21+t2dt.

Leave a Reply

Your email address will not be published. Required fields are marked *