Menu Close

prove-that-0-x-r-e-ax-dx-a-r-1-r-1-




Question Number 169809 by mokys last updated on 09/May/22
prove that ∫_0 ^( ∞) x^r  . e^(ax)  dx = (−a)^(−r−1)  .Γ(r+1)
$${prove}\:{that}\:\int_{\mathrm{0}} ^{\:\infty} {x}^{{r}} \:.\:{e}^{{ax}} \:{dx}\:=\:\left(−{a}\right)^{−{r}−\mathrm{1}} \:.\Gamma\left({r}+\mathrm{1}\right) \\ $$
Commented by mokys last updated on 09/May/22
?????
$$????? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *