Question Number 174696 by mnjuly1970 last updated on 08/Aug/22
$$ \\ $$$$\:\:\:\:\:\boldsymbol{{prove}}\:\:\boldsymbol{{that}}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{\Omega}\:=\:\int_{\mathrm{0}} ^{\:\infty} \left(\:\frac{\:\boldsymbol{{x}}}{\:\boldsymbol{{sinh}}\:\left(\boldsymbol{{x}}\right)}\:\right)^{\:\mathrm{3}} \boldsymbol{{dx}}\:=\frac{\boldsymbol{\pi}^{\:\mathrm{2}} }{\mathrm{16}}\:\left(\mathrm{12}β\:\boldsymbol{\pi}^{\:\mathrm{2}} \right)\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{{written}}\:\:\boldsymbol{{and}}\:\boldsymbol{{prepared}}\:\boldsymbol{{by}}\::\:\:\boldsymbol{{m}}.\boldsymbol{{n}}\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Answered by aleks041103 last updated on 08/Aug/22
$$\frac{\mathrm{1}}{\left(\mathrm{1}β{x}\right)^{\mathrm{3}} }=\frac{\mathrm{1}}{\mathrm{2}}\:\frac{{d}^{\mathrm{2}} }{{dx}^{\mathrm{2}} }\left(\frac{\mathrm{1}}{\mathrm{1}β{x}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\:\frac{{d}^{\mathrm{2}} }{{dx}^{\mathrm{2}} }\left(\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{i}} \right)= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\underset{{i}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{{i}!}{\left({i}β\mathrm{2}\right)!}{x}^{{i}β\mathrm{2}} \right) \\ $$$$\frac{\mathrm{1}}{{sinh}^{\mathrm{3}} {x}}=\left(\frac{\mathrm{2}{e}^{β{x}} }{\mathrm{1}β{e}^{β\mathrm{2}{x}} }\right)^{\mathrm{3}} =\mathrm{8}{e}^{β\mathrm{3}{x}} \left(\frac{\mathrm{1}}{\mathrm{1}β{r}}\right)^{\mathrm{3}} = \\ $$$$=\mathrm{4}{e}^{β\mathrm{3}{x}} \underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left({i}+\mathrm{2}\right)!}{{i}!}{r}^{{i}} = \\ $$$$=\mathrm{4}{e}^{β\mathrm{3}{x}} \underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left({i}+\mathrm{2}\right)!}{{i}!}{e}^{β\mathrm{2}{ix}} =\mathrm{4}\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left({i}+\mathrm{2}\right)!}{{i}!}{e}^{β\left(\mathrm{2}{i}+\mathrm{3}\right){x}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{3}} {dx}}{{sinh}^{\mathrm{3}} {x}}=\mathrm{4}\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left({i}+\mathrm{2}\right)!}{{i}!}\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{3}} {e}^{β\left(\mathrm{2}{i}+\mathrm{3}\right){x}} {dx} \\ $$$$\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{3}} {e}^{β\left(\mathrm{2}{i}+\mathrm{3}\right){x}} {dx}=\frac{\mathrm{1}}{\left(\mathrm{2}{i}+\mathrm{3}\right)^{\mathrm{4}} }\int_{\mathrm{0}} ^{\infty} {z}^{\mathrm{3}} {e}^{β{z}} {dz}=\frac{\mathrm{6}}{\left(\mathrm{2}{i}+\mathrm{3}\right)^{\mathrm{4}} } \\ $$$$\Rightarrow{Ans}.=\mathrm{24}\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left({i}+\mathrm{1}\right)\left({i}+\mathrm{2}\right)}{\left(\mathrm{2}{i}+\mathrm{3}\right)^{\mathrm{4}} }= \\ $$$$=\mathrm{24}\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{i}\left({i}+\mathrm{1}\right)}{\left(\mathrm{2}{i}+\mathrm{1}\right)^{\mathrm{4}} } \\ $$$$\frac{{i}\left({i}+\mathrm{1}\right)}{\left(\mathrm{2}{i}+\mathrm{1}\right)^{\mathrm{4}} }=\frac{{i}^{\mathrm{2}} +{i}}{\left(\mathrm{2}{i}+\mathrm{1}\right)^{\mathrm{4}} }=\frac{{i}^{\mathrm{2}} +\mathrm{2}.\frac{\mathrm{1}}{\mathrm{2}}.{i}+\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} β\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{\left(\mathrm{2}{i}+\mathrm{1}\right)^{\mathrm{4}} }= \\ $$$$=\frac{\left({i}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} β\frac{\mathrm{1}}{\mathrm{4}}}{\left(\mathrm{2}{i}+\mathrm{1}\right)^{\mathrm{4}} }=\frac{\mathrm{1}}{\mathrm{4}}\:\frac{\left(\mathrm{2}{i}+\mathrm{1}\right)^{\mathrm{2}} }{\left(\mathrm{2}{i}+\mathrm{1}\right)^{\mathrm{4}} }β\frac{\mathrm{1}}{\mathrm{4}}\:\frac{\mathrm{1}}{\left(\mathrm{2}{i}+\mathrm{1}\right)^{\mathrm{4}} }= \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{1}}{\left(\mathrm{2}{i}+\mathrm{1}\right)^{\mathrm{2}} }β\frac{\mathrm{1}}{\left(\mathrm{2}{i}+\mathrm{1}\right)^{\mathrm{4}} }\right) \\ $$$$\Rightarrow{Ans}.=\mathrm{6}\left[\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{i}+\mathrm{1}\right)^{\mathrm{2}} }β\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{i}+\mathrm{1}\right)^{\mathrm{4}} }\right] \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{i}+\mathrm{1}\right)^{{n}} }=\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\left(\mathrm{2}{i}+\mathrm{1}\right)^{{n}} }+\frac{\mathrm{1}}{\left(\mathrm{2}{i}\right)^{{n}} }\right)β\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{i}\right)^{{n}} }= \\ $$$$=\underset{{i}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({i}\right)^{{n}} }β\mathrm{2}^{β{n}} \underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{i}^{{n}} }= \\ $$$$=\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{i}^{{n}} }β\mathrm{1}β\mathrm{2}^{β{n}} \underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{i}^{{n}} }= \\ $$$$=\left(\mathrm{1}β\mathrm{2}^{β{n}} \right)\zeta\left({n}\right)β\mathrm{1} \\ $$$$\Rightarrow{Ans}.=\mathrm{6}\left(\left(\mathrm{1}β\mathrm{2}^{β\mathrm{2}} \right)\zeta\left(\mathrm{2}\right)β\left(\mathrm{1}β\mathrm{2}^{β\mathrm{4}} \right)\zeta\left(\mathrm{4}\right)\right)= \\ $$$$=\mathrm{6}\left(\frac{\mathrm{3}}{\mathrm{4}}\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}β\frac{\mathrm{15}}{\mathrm{16}}\:\frac{\pi^{\mathrm{4}} }{\mathrm{90}}\right)= \\ $$$$=\frac{\mathrm{3}}{\mathrm{4}}\pi^{\mathrm{2}} β\frac{\mathrm{1}}{\mathrm{16}}\pi^{\mathrm{4}} = \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{16}}\left(\mathrm{12}β\pi^{\mathrm{2}} \right) \\ $$
Commented by aleks041103 last updated on 08/Aug/22
$${I}\:{did}\:{it}\:{finally}… \\ $$π€£π€£
Commented by mnjuly1970 last updated on 09/Aug/22
$${thanks}\:{alot} \\ $$$${sir}\:{aleks}…{i}\:{appreciate} \\ $$
Commented by Tawa11 last updated on 09/Aug/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Answered by princeDera last updated on 09/Aug/22
$$ \\ $$$$ \\ $$$$\Omega\:\int_{\mathrm{0}} ^{\infty} \left(\frac{{x}}{\mathrm{sinh}\:\left({x}\right)}\right)^{\mathrm{3}} \:=\:\mathrm{8}\int_{\mathrm{0}} ^{\infty} \left(\frac{{xe}^{β{x}} }{\mathrm{1}β{e}^{β\mathrm{2}{x}} }\right)^{\mathrm{3}} \\ $$$$\Omega\:=\:\mathrm{8}\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{3}} {e}^{β\mathrm{3}{x}} }{\left(\mathrm{1}β{e}^{β\mathrm{2}{x}} \right)^{\mathrm{3}} \:}\:=\:\mathrm{4}\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{3}} {e}^{β\mathrm{3}{x}} \underset{{k}\geqslant\mathrm{0}} {\sum}\left(\mathrm{2}+{k}\right)\left(\mathrm{1}+{k}\right){e}^{β\mathrm{2}{kx}} {dx} \\ $$$$\Omega\:=\mathrm{4}\underset{{k}\geqslant\mathrm{0}} {\sum}\left(\mathrm{2}+\mathrm{3}{k}+{k}^{\mathrm{2}} \right)\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{3}} {e}^{β\left(\mathrm{3}+\mathrm{2}{k}\right){x}} {dx} \\ $$$$\Omega\:=\:\mathrm{8}\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{6}}{\left(\mathrm{3}+\mathrm{2}{k}\right)^{\mathrm{4}} \:}\:+\:\mathrm{24}\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left({k}\:+\:\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} β\:\frac{\mathrm{9}}{\mathrm{4}}}{\left(\mathrm{2}{k}+\mathrm{3}\right)^{\mathrm{4}} } \\ $$$$ \\ $$$$\Omega\:=\:\mathrm{48}\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{\left(\mathrm{2}{k}+\mathrm{1}\right)^{\mathrm{4}} }\:+\:\mathrm{6}\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(\mathrm{2}{k}+\mathrm{3}\right)^{\mathrm{2}} }{\left(\mathrm{2}{k}+\mathrm{3}\right)^{\mathrm{4}} }\:β\:\mathrm{54}\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\left(\mathrm{2}{k}+\mathrm{3}\right)^{\mathrm{4}} } \\ $$$$\Omega\:=\:\mathrm{48}\left(\lambda\left(\mathrm{4}\right)β\mathrm{1}\right)\:+\:\mathrm{6}\lambda\left(\mathrm{2}\right)β\mathrm{6}\:β\:\mathrm{54}\lambda\left(\mathrm{4}\right)\:+\:\mathrm{54} \\ $$$$\Omega\:=\:\mathrm{48}\left\{\frac{\pi^{\mathrm{4}} }{\mathrm{96}}β\mathrm{1}\right\}\:+\:\frac{\mathrm{6}\pi^{\mathrm{2}} }{\mathrm{8}}\:β\:\mathrm{6}\:β\:\mathrm{54}.\frac{\pi^{\mathrm{4}} }{\mathrm{96}}\:+\mathrm{54}\: \\ $$$$\Omega\:=\:\frac{\pi^{\mathrm{4}} }{\mathrm{96}}\left(\mathrm{48}β\mathrm{54}\right)\:+\:\frac{\mathrm{3}\pi^{\mathrm{2}} }{\mathrm{4}}\:=\:\frac{\mathrm{3}\pi^{\mathrm{2}} }{\mathrm{4}\:}\:β\:\frac{\pi^{\mathrm{4}} }{\mathrm{16}}\: \\ $$$$\Omega\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{16}}\left(\mathrm{12}β\pi^{\mathrm{2}} \right) \\ $$$$\lambda\left({x}\right)\:{is}\:{dirichlet}\:{lambda}\:{function} \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 09/Aug/22
$${grateful}\:{sir} \\ $$$$ \\ $$
Commented by Tawa11 last updated on 09/Aug/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Answered by Ar Brandon last updated on 09/Aug/22
$$\Omega=\int_{\mathrm{0}} ^{\infty} \left(\frac{{x}}{\mathrm{sinh}{x}}\right)^{\mathrm{3}} {dx}=\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{3}} }{\mathrm{sinh}^{\mathrm{3}} {x}}{dx}=\mathrm{8}\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{3}} }{\left({e}^{{x}} β{e}^{β{x}} \right)^{\mathrm{3}} }{dx} \\ $$$$\:\:\:\:=\mathrm{8}\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{3}} {e}^{β\mathrm{3}{x}} }{\left(\mathrm{1}β{e}^{β\mathrm{2}{x}} \right)^{\mathrm{3}} }{dx}=\mathrm{4}\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{3}} {e}^{β\mathrm{3}{x}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right){e}^{β\mathrm{2}{nx}} {dx} \\ $$$$======================================= \\ $$$$\:\:\:\:\frac{\mathrm{1}}{\mathrm{1}β{t}}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{t}^{{n}} \:\Rightarrow\frac{\mathrm{1}}{\left(\mathrm{1}β{t}\right)^{\mathrm{2}} }=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{nt}^{{n}β\mathrm{1}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left({n}+\mathrm{1}\right){t}^{{n}} \\ $$$$\:\:\:\:\:\Rightarrow\frac{\mathrm{2}}{\left(\mathrm{1}β{t}\right)^{\mathrm{3}} }=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{n}\left({n}+\mathrm{1}\right){t}^{{n}β\mathrm{1}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right){t}^{{n}} \\ $$$$======================================= \\ $$$$\:\:\:\:=\mathrm{4}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{3}} {e}^{β\left(\mathrm{2}{n}+\mathrm{3}\right){x}} {dx}=\mathrm{4}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}{\left(\mathrm{2}{n}+\mathrm{3}\right)^{\mathrm{4}} }\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{3}} {e}^{β{x}} {dx} \\ $$$$\:\:\:\:=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{2}{n}+\mathrm{3}β\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{3}+\mathrm{1}\right)}{\left(\mathrm{2}{n}+\mathrm{3}\right)^{\mathrm{4}} }\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{3}} {e}^{β{x}} {dx}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{2}{n}+\mathrm{3}\right)^{\mathrm{2}} β\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{3}\right)^{\mathrm{4}} }\Gamma\left(\mathrm{4}\right) \\ $$$$\:\:\:\:=\mathrm{6}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{3}\right)^{\mathrm{2}} }β\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{3}\right)^{\mathrm{4}} }\right)=\mathrm{6}\left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }β\mathrm{1}β\left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{4}} }β\mathrm{1}\right)\right) \\ $$$$\:\:\:\:=\mathrm{6}\left(\frac{\mathrm{3}}{\mathrm{4}}Γ\zeta\left(\mathrm{2}\right)β\frac{\mathrm{15}}{\mathrm{16}}Γ\zeta\left(\mathrm{4}\right)\right)=\mathrm{6}\left(\frac{\mathrm{3}}{\mathrm{4}}Γ\frac{\pi^{\mathrm{2}} }{\mathrm{6}}β\frac{\mathrm{15}}{\mathrm{16}}Γ\frac{\pi^{\mathrm{4}} }{\mathrm{90}}\right)=\frac{\mathrm{3}\pi^{\mathrm{2}} }{\mathrm{4}}β\frac{\pi^{\mathrm{4}} }{\mathrm{16}}=\frac{\pi^{\mathrm{2}} }{\mathrm{16}}\left(\mathrm{12}β\pi^{\mathrm{2}} \right)\bigstar \\ $$
Commented by mnjuly1970 last updated on 09/Aug/22
$${thank}\:{you}\:{sir} \\ $$