Menu Close

prove-that-0-x-x-ln-e-x-1-dx-n-1-1-n-3-




Question Number 33349 by caravan msup abdo. last updated on 14/Apr/18
prove that   ∫_0 ^∞  x(x−ln(e^x −1))dx=Σ_(n=1) ^∞  (1/n^3 )
$${prove}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{x}\left({x}−{ln}\left({e}^{{x}} −\mathrm{1}\right)\right){dx}=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{3}} } \\ $$
Commented by math khazana by abdo last updated on 18/Apr/18
let put I = ∫_0 ^∞   x(x −ln(e^x  −1))dx  I = ∫_0 ^∞   x( x −ln(e^x (1−e^(−x) ))dx  = −∫_0 ^∞   x  ln(1−e^(−x) )dx  but we have  (1/(1−u))= Σ_(n=0) ^∞  u^n   ⇒ −ln(1−u)  =Σ_(n=0) ^∞  (u^(n+1) /(n+1))  = Σ_(n=1) ^∞  (u^n /n) ⇒ −ln(1−e^(−x) ) = Σ_(n=1) ^∞   (e^(−nx) /n)  I = ∫_0 ^∞ (Σ_(n=1) ^∞   (e^(−nx) /n))x dx  = Σ_(n=1) ^∞    (1/n)∫_0 ^∞   x e^(−nx)  dx      ∫_0 ^∞  x e^(−nx)  dx =_(nx =t)   ∫_0 ^∞  (t/n) e^(−t)   (dt/n)  =(1/n^2 ) ∫_0 ^∞  t e^(−t) dt   and by parts  ∫_0 ^∞   t e^(−t) dt = [−t e^(−t) ]_0 ^(+∞)  +∫_0 ^∞  e^(−t) dt  =[ −e^(−t) ]_0 ^(+∞)  =1  ⇒  I  =  Σ_(n=1) ^∞ (1/n^3 )  .
$${let}\:{put}\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:{x}\left({x}\:−{ln}\left({e}^{{x}} \:−\mathrm{1}\right)\right){dx} \\ $$$${I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:{x}\left(\:{x}\:−{ln}\left({e}^{{x}} \left(\mathrm{1}−{e}^{−{x}} \right)\right){dx}\right. \\ $$$$=\:−\int_{\mathrm{0}} ^{\infty} \:\:{x}\:\:{ln}\left(\mathrm{1}−{e}^{−{x}} \right){dx}\:\:{but}\:{we}\:{have} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}−{u}}=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{u}^{{n}} \:\:\Rightarrow\:−{ln}\left(\mathrm{1}−{u}\right)\:\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{u}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}} \\ $$$$=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{u}^{{n}} }{{n}}\:\Rightarrow\:−{ln}\left(\mathrm{1}−{e}^{−{x}} \right)\:=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{e}^{−{nx}} }{{n}} \\ $$$${I}\:=\:\int_{\mathrm{0}} ^{\infty} \left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{e}^{−{nx}} }{{n}}\right){x}\:{dx} \\ $$$$=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\infty} \:\:{x}\:{e}^{−{nx}} \:{dx}\:\:\:\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{x}\:{e}^{−{nx}} \:{dx}\:=_{{nx}\:={t}} \:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{t}}{{n}}\:{e}^{−{t}} \:\:\frac{{dt}}{{n}} \\ $$$$=\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\int_{\mathrm{0}} ^{\infty} \:{t}\:{e}^{−{t}} {dt}\:\:\:{and}\:{by}\:{parts} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{t}\:{e}^{−{t}} {dt}\:=\:\left[−{t}\:{e}^{−{t}} \right]_{\mathrm{0}} ^{+\infty} \:+\int_{\mathrm{0}} ^{\infty} \:{e}^{−{t}} {dt} \\ $$$$=\left[\:−{e}^{−{t}} \right]_{\mathrm{0}} ^{+\infty} \:=\mathrm{1}\:\:\Rightarrow\:\:{I}\:\:=\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{n}^{\mathrm{3}} }\:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *