Menu Close

prove-that-0-x-x-ln-e-x-1-dx-n-1-1-n-3-




Question Number 33349 by caravan msup abdo. last updated on 14/Apr/18
prove that   ∫_0 ^∞  x(x−ln(e^x −1))dx=Σ_(n=1) ^∞  (1/n^3 )
provethat0x(xln(ex1))dx=n=11n3
Commented by math khazana by abdo last updated on 18/Apr/18
let put I = ∫_0 ^∞   x(x −ln(e^x  −1))dx  I = ∫_0 ^∞   x( x −ln(e^x (1−e^(−x) ))dx  = −∫_0 ^∞   x  ln(1−e^(−x) )dx  but we have  (1/(1−u))= Σ_(n=0) ^∞  u^n   ⇒ −ln(1−u)  =Σ_(n=0) ^∞  (u^(n+1) /(n+1))  = Σ_(n=1) ^∞  (u^n /n) ⇒ −ln(1−e^(−x) ) = Σ_(n=1) ^∞   (e^(−nx) /n)  I = ∫_0 ^∞ (Σ_(n=1) ^∞   (e^(−nx) /n))x dx  = Σ_(n=1) ^∞    (1/n)∫_0 ^∞   x e^(−nx)  dx      ∫_0 ^∞  x e^(−nx)  dx =_(nx =t)   ∫_0 ^∞  (t/n) e^(−t)   (dt/n)  =(1/n^2 ) ∫_0 ^∞  t e^(−t) dt   and by parts  ∫_0 ^∞   t e^(−t) dt = [−t e^(−t) ]_0 ^(+∞)  +∫_0 ^∞  e^(−t) dt  =[ −e^(−t) ]_0 ^(+∞)  =1  ⇒  I  =  Σ_(n=1) ^∞ (1/n^3 )  .
letputI=0x(xln(ex1))dxI=0x(xln(ex(1ex))dx=0xln(1ex)dxbutwehave11u=n=0unln(1u)=n=0un+1n+1=n=1unnln(1ex)=n=1enxnI=0(n=1enxn)xdx=n=11n0xenxdx0xenxdx=nx=t0tnetdtn=1n20tetdtandbyparts0tetdt=[tet]0++0etdt=[et]0+=1I=n=11n3.

Leave a Reply

Your email address will not be published. Required fields are marked *