Question Number 40885 by prof Abdo imad last updated on 28/Jul/18
$${prove}\:{that} \\ $$$$\left.\mathrm{1}\right)\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{t}^{{p}} {ln}\left({t}\right)}{{t}−\mathrm{1}}{dt}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:−\sum_{{k}=\mathrm{1}} ^{{p}} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{t}^{\mathrm{2}{p}} {ln}\left({t}\right)}{{t}^{\mathrm{2}} −\mathrm{1}}{dt}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:−\sum_{{k}=\mathrm{0}} ^{{p}−\mathrm{1}} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{k}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Commented by math khazana by abdo last updated on 02/Aug/18
$$\left.\mathrm{1}\left.\right)\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{t}^{{p}} {ln}\left({t}\right)}{{t}−\mathrm{1}}\:{dt}\:=−\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{{p}} {ln}\left({t}\right)\left(\sum_{{n}=\mathrm{0}} ^{\infty} {t}^{{n}} \right)\right){dt} \\ $$$$=−\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{{n}+{p}} {ln}\left({t}\right)\:{dt}\:=−\sum_{{n}=\mathrm{0}} ^{\infty} \:{A}_{{n}} \:\:{and}\:{by} \\ $$$${parts}\: \\ $$$${A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{{n}+{p}} {ln}\left({t}\right){dt}\:=\left[\frac{\mathrm{1}}{{n}+{p}+\mathrm{1}}{t}^{{n}+{p}+\mathrm{1}} {ln}\left({t}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}}{{n}+{p}+\mathrm{1}}\:{t}^{{n}+{p}} \:{dt} \\ $$$$=−\frac{\mathrm{1}}{\left({n}+{p}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow−\sum_{{n}=\mathrm{0}} ^{\infty} \:{A}_{{n}} =\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left({n}+{p}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=_{{n}+{p}+\mathrm{1}={k}} \:\:\:\:\sum_{{k}={p}+\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:\:{but} \\ $$$$\sum_{{k}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:=\sum_{{k}=\mathrm{1}} ^{{p}} \:\:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:+\sum_{{k}={p}+\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\sum_{{k}={p}+\mathrm{1}} ^{\infty} \:=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:−\sum_{{k}=\mathrm{1}} ^{{p}} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{t}^{{p}} {ln}\left({t}\right)}{{t}−\mathrm{1}}\:{dt}. \\ $$