Menu Close

prove-that-1-1-




Question Number 166113 by mathls last updated on 13/Feb/22
prove that 1!=1
provethat1!=1
Commented by mathls last updated on 13/Feb/22
?
?
Commented by MJS_new last updated on 14/Feb/22
there′s no proof.  we define ∀n∈N^★ : n!=Π_(j=1) ^n j  ⇒  1!=Π_(j=1) ^1 j=1  also there′s no proof for 0!=1  we define 0!=1 because it makes sense.
theresnoproof.wedefinenN:n!=nj=1j1!=1j=1j=1alsotheresnoprooffor0!=1wedefine0!=1becauseitmakessense.
Answered by alephzero last updated on 14/Feb/22
n! = n ∙ (n−1)!  Let n = 2  ⇒ 2! = 2 ∙ 1!  ⇒ 2 = 2 ∙ 1!  ⇒ 1! = 1
n!=n(n1)!Letn=22!=21!2=21!1!=1
Answered by Mathspace last updated on 14/Feb/22
1!=Γ(2)=∫_0 ^∞ t^(2−1) e^(−t) dt  =∫_0 ^∞  t e^(−t) dt=[−te^(−t) ]_0 ^∞ +∫_0 ^∞  e^(−t) dt  =[−e^(−t) ]_0 ^∞ =1  0!=Γ(1)=∫_0 ^∞ t^(1−1)  e^(−t) dt  =∫_0 ^∞ e^(−t) dt=[−e^(−t) ]_0 ^∞ =1
1!=Γ(2)=0t21etdt=0tetdt=[tet]0+0etdt=[et]0=10!=Γ(1)=0t11etdt=0etdt=[et]0=1

Leave a Reply

Your email address will not be published. Required fields are marked *