Menu Close

prove-that-1-1-1-1-1-1-1-1-1-1-1-




Question Number 147071 by alcohol last updated on 17/Jul/21
prove that  (√(1+(√(1+(√(1+(√(1+...)))))))) = 1+(1/(1+(1/(1+(1/(1+⋱))))))
$${prove}\:{that} \\ $$$$\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+…}}}}\:=\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\ddots}}} \\ $$
Answered by Olaf_Thorendsen last updated on 17/Jul/21
ϕ^2  = ϕ+1 (golden ratio ((1+(√5))/2))  ⇒ ϕ = 1+(1/ϕ)  ϕ = 1+(1/(1+(1/ϕ)))  ϕ = 1+(1/(1+(1/(1+(1/ϕ)))))  ...etc...  ϕ = 1+(1/(1+(1/(1+(1/(...))))))  Let x = (√(1+(√(1+(√(1+(√(1+...))))))))  x^2  = 1+(√(1+(√(1+(√(1+...))))))  x^2  = 1+x  x^2 −x−1 = 0  (x−((1−(√5))/2))(x−((1+(√5))/( 2))) = 0  x = ((1±(√5))/2)  But ((1−(√5))/2)<0 : impossible because x>1  Finally x = ((1+(√5))/2) = ϕ
$$\varphi^{\mathrm{2}} \:=\:\varphi+\mathrm{1}\:\left({golden}\:{ratio}\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\:\varphi\:=\:\mathrm{1}+\frac{\mathrm{1}}{\varphi} \\ $$$$\varphi\:=\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\varphi}} \\ $$$$\varphi\:=\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\varphi}}} \\ $$$$…{etc}… \\ $$$$\varphi\:=\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{…}}} \\ $$$$\mathrm{Let}\:{x}\:=\:\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+…}}}} \\ $$$${x}^{\mathrm{2}} \:=\:\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+…}}} \\ $$$${x}^{\mathrm{2}} \:=\:\mathrm{1}+{x} \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{1}\:=\:\mathrm{0} \\ $$$$\left({x}−\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)\left({x}−\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\:\mathrm{2}}\right)\:=\:\mathrm{0} \\ $$$${x}\:=\:\frac{\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\mathrm{But}\:\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}<\mathrm{0}\::\:\mathrm{impossible}\:\mathrm{because}\:{x}>\mathrm{1} \\ $$$$\mathrm{Finally}\:{x}\:=\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:=\:\varphi \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *