Menu Close

prove-that-1-1-1-1-1-1-1-1-1-1-1-




Question Number 147071 by alcohol last updated on 17/Jul/21
prove that  (√(1+(√(1+(√(1+(√(1+...)))))))) = 1+(1/(1+(1/(1+(1/(1+⋱))))))
provethat1+1+1+1+=1+11+11+11+
Answered by Olaf_Thorendsen last updated on 17/Jul/21
ϕ^2  = ϕ+1 (golden ratio ((1+(√5))/2))  ⇒ ϕ = 1+(1/ϕ)  ϕ = 1+(1/(1+(1/ϕ)))  ϕ = 1+(1/(1+(1/(1+(1/ϕ)))))  ...etc...  ϕ = 1+(1/(1+(1/(1+(1/(...))))))  Let x = (√(1+(√(1+(√(1+(√(1+...))))))))  x^2  = 1+(√(1+(√(1+(√(1+...))))))  x^2  = 1+x  x^2 −x−1 = 0  (x−((1−(√5))/2))(x−((1+(√5))/( 2))) = 0  x = ((1±(√5))/2)  But ((1−(√5))/2)<0 : impossible because x>1  Finally x = ((1+(√5))/2) = ϕ
φ2=φ+1(goldenratio1+52)φ=1+1φφ=1+11+1φφ=1+11+11+1φetcφ=1+11+11+1Letx=1+1+1+1+x2=1+1+1+1+x2=1+xx2x1=0(x152)(x1+52)=0x=1±52But152<0:impossiblebecausex>1Finallyx=1+52=φ

Leave a Reply

Your email address will not be published. Required fields are marked *