Menu Close

Prove-that-1-1-2-1-3-1-n-lt-2-n-




Question Number 160694 by naka3546 last updated on 04/Dec/21
Prove  that         1 + (1/( (√2))) + (1/( (√3))) + …+ (1/( (√n)))  < 2(√n)
$${Prove}\:\:{that}\:\: \\ $$$$\:\:\:\:\:\mathrm{1}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:+\:\ldots+\:\frac{\mathrm{1}}{\:\sqrt{{n}}}\:\:<\:\mathrm{2}\sqrt{{n}} \\ $$
Answered by mindispower last updated on 04/Dec/21
(1/( (√(1+x))))=(2/(2(√(1+x))))<(2/( (√x)+(√(x+1))))=2((√(1+x))−(√x))  Σ_(k=0) ^(n−1) (1/( (√(1+k))))<2Σ_(k=0) ^(n−1) ((√(k+1))−(√k))  1+(1/( (√2)))+...+(1/( (√n)))<2(√n)
$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}}}=\frac{\mathrm{2}}{\mathrm{2}\sqrt{\mathrm{1}+{x}}}<\frac{\mathrm{2}}{\:\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}}=\mathrm{2}\left(\sqrt{\mathrm{1}+{x}}−\sqrt{{x}}\right) \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{k}}}<\mathrm{2}\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\left(\sqrt{{k}+\mathrm{1}}−\sqrt{{k}}\right) \\ $$$$\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+…+\frac{\mathrm{1}}{\:\sqrt{{n}}}<\mathrm{2}\sqrt{{n}} \\ $$
Commented by naka3546 last updated on 04/Dec/21
Thank  you,  sir.
$${Thank}\:\:{you},\:\:{sir}. \\ $$
Commented by mindispower last updated on 05/Dec/21
withe pleasur god bless You
$${withe}\:{pleasur}\:{god}\:{bless}\:{You} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *