Menu Close

Prove-that-1-1-4-1-9-1-n-2-lt-2-for-n-N-




Question Number 159497 by naka3546 last updated on 17/Nov/21
Prove  that         1 + (1/4) + (1/9) + …+ (1/n^2 )  <  2  for  n ∈  N  .
$${Prove}\:\:{that}\:\: \\ $$$$\:\:\:\:\:\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{4}}\:+\:\frac{\mathrm{1}}{\mathrm{9}}\:+\:\ldots+\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\:<\:\:\mathrm{2} \\ $$$${for}\:\:{n}\:\in\:\:\mathbb{N}\:\:. \\ $$
Commented by mr W last updated on 18/Nov/21
1+(1/2^2 )+(1/3^2 )+...+(1/n^2 )  <1+(1/2^2 )+(1/3^2 )+...+(1/n^2 )+(1/((n+1)^2 ))+...=(π^2 /6)  <((10)/6)<((12)/6)=2  ⇒1+(1/2^2 )+(1/3^2 )+...+(1/n^2 )<2
$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+…+\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$$$<\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+…+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }+\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }+…=\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$<\frac{\mathrm{10}}{\mathrm{6}}<\frac{\mathrm{12}}{\mathrm{6}}=\mathrm{2} \\ $$$$\Rightarrow\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+…+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }<\mathrm{2} \\ $$
Commented by naka3546 last updated on 18/Nov/21
Thank   you  ,  sir.
$${Thank}\:\:\:{you}\:\:,\:\:{sir}. \\ $$
Commented by SANOGO last updated on 18/Nov/21
prkw (π^2 /6)  explique moi un peu
$${prkw}\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:\:{explique}\:{moi}\:{un}\:{peu} \\ $$
Commented by mr W last updated on 18/Nov/21
https://en.m.wikipedia.org/wiki/Basel_problem

Leave a Reply

Your email address will not be published. Required fields are marked *