Question Number 157323 by MathSh last updated on 22/Oct/21

Answered by mindispower last updated on 22/Oct/21
![Ψ((p/q))=(π^2 /(2sin^2 (((pπ)/q))))+2qΣ_(k=1) ^([((q−1)/2)]) sin(((2πkp)/q))Cl_2 (((2πk)/q)) Cl_2 . Claus function Ψ_1 ((1/8))=(π^2 /(2sin^2 ((π/8))))+16Σ_(k=1) ^3 sin(((πk)/4))Cl_2 (((πk)/4)) =((2π^2 )/(2−(√2))) +16(sin((π/4))Cl_2 ((π/4))+Cl_2 ((π/2))+sin((π/4))cl_2 (((3π)/4))) Ψ_1 ((5/8))=((2π^2 )/( (√2)+2))+16(sin(((10π)/8))Cl_2 ((π/4))+sin(((20π)/8))Cl_2 ((π/2))+sin(((30π)/8))Cl_2 (((3π)/4))) =((2π^2 )/(2+(√2)))+16(−sin((π/4))Cl_2 ((π/4))+Cl_2 ((π/2))−sin((π/4))Cl_2 (((3π)/4))) ψ_1 ((1/8))+ψ_1 ((5/8)) =((2π^2 )/(2+(√2)))+((2π^2 )/(2−(√2)))+32Cl_2 ((π/2)) =4π^2 +32Cl_2 ((π/2)) Cl_2 (x)=Σ_(n≥1) ((sin(nx))/n^2 ),Cl_2 ((π/2))=Σ_(n≥1) ((sin(n(π/2)))/n^2 ) sin(nπ)=0,∀n∈Z⇒ Cl_2 ((π/2))=Σ_(n≥0) ((sin(nπ+(π/2)))/((2n+1)^2 ))=Σ_(n≥0) (((−1)^n )/((2n+1)))=β(2)=G ⇔ψ((1/8))+ψ((5/8))=4π^2 +32G](https://www.tinkutara.com/question/Q157353.png)
Commented by MathSh last updated on 22/Oct/21

Answered by qaz last updated on 22/Oct/21

Commented by MathSh last updated on 22/Oct/21
