Menu Close

Prove-that-1-1-8-2-5-8-32G-4pi-2-trigamma-function-G-catalan-constant-




Question Number 157323 by MathSh last updated on 22/Oct/21
Prove that:  Ψ_1 ((1/8)) + Ψ_2 ((5/8)) = 32G + 4π^2   Ψ-trigamma function  G-catalan constant
Provethat:Ψ1(18)+Ψ2(58)=32G+4π2ΨtrigammafunctionGcatalanconstant
Answered by mindispower last updated on 22/Oct/21
Ψ((p/q))=(π^2 /(2sin^2 (((pπ)/q))))+2qΣ_(k=1) ^([((q−1)/2)]) sin(((2πkp)/q))Cl_2 (((2πk)/q))  Cl_2 . Claus function  Ψ_1 ((1/8))=(π^2 /(2sin^2 ((π/8))))+16Σ_(k=1) ^3 sin(((πk)/4))Cl_2 (((πk)/4))  =((2π^2 )/(2−(√2))) +16(sin((π/4))Cl_2 ((π/4))+Cl_2 ((π/2))+sin((π/4))cl_2 (((3π)/4)))  Ψ_1 ((5/8))=((2π^2 )/( (√2)+2))+16(sin(((10π)/8))Cl_2 ((π/4))+sin(((20π)/8))Cl_2 ((π/2))+sin(((30π)/8))Cl_2 (((3π)/4)))  =((2π^2 )/(2+(√2)))+16(−sin((π/4))Cl_2 ((π/4))+Cl_2 ((π/2))−sin((π/4))Cl_2 (((3π)/4)))  ψ_1 ((1/8))+ψ_1 ((5/8))  =((2π^2 )/(2+(√2)))+((2π^2 )/(2−(√2)))+32Cl_2 ((π/2))  =4π^2 +32Cl_2 ((π/2))  Cl_2 (x)=Σ_(n≥1) ((sin(nx))/n^2 ),Cl_2 ((π/2))=Σ_(n≥1) ((sin(n(π/2)))/n^2 )  sin(nπ)=0,∀n∈Z⇒  Cl_2 ((π/2))=Σ_(n≥0) ((sin(nπ+(π/2)))/((2n+1)^2 ))=Σ_(n≥0) (((−1)^n )/((2n+1)))=β(2)=G  ⇔ψ((1/8))+ψ((5/8))=4π^2 +32G
Ψ(pq)=π22sin2(pπq)+2q[q12]k=1sin(2πkpq)Cl2(2πkq)Cl2.ClausfunctionΨ1(18)=π22sin2(π8)+163k=1sin(πk4)Cl2(πk4)=2π222+16(sin(π4)Cl2(π4)+Cl2(π2)+sin(π4)cl2(3π4))Ψ1(58)=2π22+2+16(sin(10π8)Cl2(π4)+sin(20π8)Cl2(π2)+sin(30π8)Cl2(3π4))=2π22+2+16(sin(π4)Cl2(π4)+Cl2(π2)sin(π4)Cl2(3π4))ψ1(18)+ψ1(58)=2π22+2+2π222+32Cl2(π2)=4π2+32Cl2(π2)Cl2(x)=n1sin(nx)n2,Cl2(π2)=n1sin(nπ2)n2sin(nπ)=0,nZCl2(π2)=n0sin(nπ+π2)(2n+1)2=n0(1)n(2n+1)=β(2)=Gψ(18)+ψ(58)=4π2+32G
Commented by MathSh last updated on 22/Oct/21
Perfect dear Ser, thank you very much
PerfectdearSer,thankyouverymuch
Answered by qaz last updated on 22/Oct/21
ψ′((1/8))+ψ′((5/8))  =Σ_(n=0) ^∞ (1/((n+(1/8))^2 ))+(1/((n+(5/8))^2 ))  =64Σ_(n=0) ^∞ (1/((8n+1)^2 ))+(1/((8n+5)^2 ))  =−64Σ_(n=0) ^∞ ∫_0 ^1 (x^(8n) +x^(8n+4) )lnxdx  =−64∫_0 ^1 (1+x^4 )lnxΣ_(n=0) ^∞ x^(8n) dx  =−64∫_0 ^1 (((1+x^4 )lnx)/(1−x^8 ))dx  =−32∫_0 ^1 ((1/(1−x^2 ))+(1/(1+x^2 )))lnxdx  =−32Σ_(n=0) ^∞ ∫_0 ^1 (x^(2n) +(−1)^n x^(2n) )lnxdx  =32Σ_(n=0) ^∞ (1/((2n+1)^2 ))+(((−1)^n )/((2n+1)^2 ))  =32(1−2^(−2) )ζ(2)+32G  =4π^2 +32G
ψ(18)+ψ(58)=n=01(n+18)2+1(n+58)2=64n=01(8n+1)2+1(8n+5)2=64n=001(x8n+x8n+4)lnxdx=6401(1+x4)lnxn=0x8ndx=6401(1+x4)lnx1x8dx=3201(11x2+11+x2)lnxdx=32n=001(x2n+(1)nx2n)lnxdx=32n=01(2n+1)2+(1)n(2n+1)2=32(122)ζ(2)+32G=4π2+32G
Commented by MathSh last updated on 22/Oct/21
Perfect dear Ser, thank you so much
PerfectdearSer,thankyousomuch

Leave a Reply

Your email address will not be published. Required fields are marked *