Menu Close

Prove-that-1-2-3-4-5-6-2005-2006-2007-2008-lt-1-2009-




Question Number 104092 by naka3546 last updated on 19/Jul/20
Prove  that    (1/2) ∙ (3/4) ∙ (5/6) ∙ …∙ ((2005)/(2006)) ∙ ((2007)/(2008))  <  (1/( (√(2009))))
Provethat1234562005200620072008<12009
Commented by JDamian last updated on 19/Jul/20
I guess ((2007)/(2009)) should actually be ((2007)/(2008))
Iguess20072009shouldactuallybe20072008
Answered by 1549442205PVT last updated on 19/Jul/20
It is easy to see that if  (a/b)<1 then a<b  ⇒ab+a<ab+b⇒a(b+1)<b(a+1)⇒(a/b)<((a+1)/(b+1)).  Hence,  Putting A=(1/2).(3/4).(5/6)....((2005)/(2006)).((2007)/(2009)).We have:  (1/2)<(2/3),(3/4)<(4/5),(5/6)<(6/7)...,((2005)/(2006))<((2006)/(2007)),((2007)/(2009))<((2009)/(2010))  Multiplying 1004 inequlities side by  side we getA<(2/3).(4/5).(6/7)....((2006)/(2007)).((2009)/(2010))=B  ⇒A^2 <AB=(1/2).(2/3).(3/4).(4/5).(5/6)....((2005)/(2006)).((2006)/(2007)).((2007)/(2009)).((2009)/(2010))  =(1/(2010))⇒A<(1/( (√(2010))))<(1/( (√(2009))))(q.e.d)
Itiseasytoseethatifab<1thena<bab+a<ab+ba(b+1)<b(a+1)ab<a+1b+1.Hence,PuttingA=12.34.56.20052006.20072009.Wehave:12<23,34<45,56<67,20052006<20062007,20072009<20092010Multiplying1004inequlitiessidebysidewegetA<23.45.67.20062007.20092010=BA2<AB=12.23.34.45.56.20052006.20062007.20072009.20092010=12010A<12010<12009(q.e.d)

Leave a Reply

Your email address will not be published. Required fields are marked *