Menu Close

prove-that-1-3-1-4-1-127-1-128-gt-1-




Question Number 125006 by Mammadli last updated on 07/Dec/20
prove that:  (1/3)+(1/4)+...+(1/(127))+(1/(128))>1
$$\boldsymbol{{prove}}\:\boldsymbol{{that}}: \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+…+\frac{\mathrm{1}}{\mathrm{127}}+\frac{\mathrm{1}}{\mathrm{128}}>\mathrm{1} \\ $$
Commented by mr W last updated on 07/Dec/20
that′s too easy.  try to prove  (1/3)+(1/4)+...+(1/(127))+(1/(128))>3
$${that}'{s}\:{too}\:{easy}. \\ $$$${try}\:{to}\:{prove} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+…+\frac{\mathrm{1}}{\mathrm{127}}+\frac{\mathrm{1}}{\mathrm{128}}>\mathrm{3} \\ $$
Commented by Mammadli last updated on 07/Dec/20
Sorry dear, >3

Leave a Reply

Your email address will not be published. Required fields are marked *