Question Number 162377 by mnjuly1970 last updated on 29/Dec/21
$$ \\ $$$$\:\:{prove}\:\:{that} \\ $$$$ \\ $$$$\:\:\:\:\:\:\psi''\:\left(\frac{\mathrm{1}}{\mathrm{4}}\:\right)=\:−\mathrm{2}\pi^{\:\mathrm{3}} −\:\mathrm{56}\:\zeta\:\left(\mathrm{3}\:\right) \\ $$$$ \\ $$
Commented by aleks041103 last updated on 29/Dec/21
$$\psi''\left(\frac{\mathrm{1}}{\mathrm{4}}\right)=\psi_{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)=\left(−\mathrm{1}\right)^{\mathrm{2}+\mathrm{1}} \mathrm{2}!\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({k}+\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}+\mathrm{1}} }= \\ $$$$=−\mathrm{2}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({k}+\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{3}} }=−\mathrm{128}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{4}{k}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$
Commented by amin96 last updated on 29/Dec/21
$${bravo} \\ $$
Answered by mindispower last updated on 30/Dec/21
$$\Psi''\left(\frac{\mathrm{1}}{\mathrm{4}}\right)=−\mathrm{128}\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\left(\mathrm{4}{n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$\Psi''\left({x}\right)−\Psi''\left(\mathrm{1}−{x}\right)=−\mathrm{2}\pi^{\mathrm{3}} \left(\mathrm{1}+{cot}^{\mathrm{2}} \left(\pi{x}\right)\right){cot}\left(\pi{x}\right) \\ $$$$\Psi''\left(\frac{\mathrm{1}}{\mathrm{4}}\right)−\Psi''\left(\frac{\mathrm{3}}{\mathrm{4}}\right)=−\mathrm{4}\pi^{\mathrm{3}} \\ $$$$\zeta\left(\mathrm{3}\right)=\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\left(\mathrm{4}{n}+\mathrm{1}\right)^{\mathrm{3}} }+\left(\frac{\mathrm{1}}{\mathrm{4}{n}+\mathrm{3}}\right)^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{64}\left({n}+\mathrm{1}\right)^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{8}\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$=−\frac{\Psi''\left(\frac{\mathrm{1}}{\mathrm{4}}\right)+\Psi''\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}{\mathrm{64}}+\frac{\mathrm{1}}{\mathrm{8}}\left(\frac{\mathrm{1}}{\mathrm{8}}\zeta\left(\mathrm{3}\right)+\frac{\mathrm{7}}{\mathrm{8}}\zeta\left(\mathrm{3}\right)\right) \\ $$$$\Psi''\left(\frac{\mathrm{3}}{\mathrm{4}}\right)=\Psi''\left(\frac{\mathrm{1}}{\mathrm{4}}\right)+\mathrm{4}\pi^{\mathrm{3}} \\ $$$$\Rightarrow−\frac{\mathrm{2}\Psi''\left(\frac{\mathrm{1}}{\mathrm{4}}\right)+\mathrm{4}\pi^{\mathrm{3}} }{\mathrm{64}}+\frac{\zeta\left(\mathrm{3}\right)}{\mathrm{8}}=\zeta\left(\mathrm{3}\right) \\ $$$$\Rightarrow\Psi''\left(\frac{\mathrm{1}}{\mathrm{4}}\right)=−\mathrm{56}\zeta\left(\mathrm{3}\right)−\mathrm{2}\pi \\ $$$$ \\ $$