Menu Close

prove-that-1-a-x-n-1-an-x-x-a-




Question Number 17957 by Arnab Maiti last updated on 13/Jul/17
prove that (1+(a/x))^n =(1+((an)/x)) ,  x≫a
$$\mathrm{prove}\:\mathrm{that}\:\left(\mathrm{1}+\frac{\mathrm{a}}{\mathrm{x}}\right)^{\mathrm{n}} =\left(\mathrm{1}+\frac{\mathrm{an}}{\mathrm{x}}\right)\:,\:\:\mathrm{x}\gg\mathrm{a} \\ $$
Answered by 42 last updated on 13/Jul/17
Expand using binomial theorem:  1 + n((a/x)) + ((n(n − 1))/2)((a/x))^2  + ...  Since a ≪ x so ((a/x))^2 , ((a/x))^3 , ... are so  small and can be neglected.  ∴(1 + (a/x))^n  = 1 + ((an)/x), provided a ≪ x
$$\mathrm{Expand}\:\mathrm{using}\:\mathrm{binomial}\:\mathrm{theorem}: \\ $$$$\mathrm{1}\:+\:{n}\left(\frac{{a}}{{x}}\right)\:+\:\frac{{n}\left({n}\:−\:\mathrm{1}\right)}{\mathrm{2}}\left(\frac{{a}}{{x}}\right)^{\mathrm{2}} \:+\:… \\ $$$$\mathrm{Since}\:{a}\:\ll\:{x}\:\mathrm{so}\:\left(\frac{{a}}{{x}}\right)^{\mathrm{2}} ,\:\left(\frac{{a}}{{x}}\right)^{\mathrm{3}} ,\:…\:\mathrm{are}\:\mathrm{so} \\ $$$$\mathrm{small}\:\mathrm{and}\:\mathrm{can}\:\mathrm{be}\:\mathrm{neglected}. \\ $$$$\therefore\left(\mathrm{1}\:+\:\frac{{a}}{{x}}\right)^{{n}} \:=\:\mathrm{1}\:+\:\frac{{an}}{{x}},\:\mathrm{provided}\:{a}\:\ll\:{x} \\ $$
Commented by Arnab Maiti last updated on 19/Jul/17
Please solve the question   without using binomial theorem.
$$\mathrm{Please}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{question}\: \\ $$$$\mathrm{without}\:\mathrm{using}\:\mathrm{binomial}\:\mathrm{theorem}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *