Question Number 181592 by mathlove last updated on 27/Nov/22
$${prove}\:{that} \\ $$$$\frac{\mathrm{1}}{{cos}\mathrm{0}\:{cos}\mathrm{1}\:}+\frac{\mathrm{1}}{{cos}\mathrm{1}\:{cos}\mathrm{2}}+……+\frac{\mathrm{1}}{{cos}\mathrm{88}\:{cos}\mathrm{89}}=\frac{{cos}\mathrm{1}}{{sin}^{\mathrm{2}} \mathrm{1}} \\ $$
Answered by som(math1967) last updated on 27/Nov/22
$$\frac{\mathrm{1}}{{sin}\mathrm{1}}\left[\frac{{sin}\left(\mathrm{1}−\mathrm{0}\right)}{{cos}\mathrm{0}{cos}\mathrm{1}}+\frac{{sin}\left(\mathrm{2}−\mathrm{1}\right)}{{cos}\mathrm{1}{cos}\mathrm{2}}+\right. \\ $$$$\left….+\frac{{sin}\left(\mathrm{89}−\mathrm{88}\right)}{{cos}\mathrm{88}{cos}\mathrm{89}}\right] \\ $$$$=\frac{\mathrm{1}}{{sin}\mathrm{1}}\left[\frac{{sin}\mathrm{1}{cos}\mathrm{0}}{{cos}\mathrm{1}{cos}\mathrm{0}}\:+\frac{{sin}\mathrm{0}{cos}\mathrm{1}}{{cos}\mathrm{0}{cos}\mathrm{1}}\right. \\ $$$$\left.+\frac{{sin}\mathrm{2}{cos}\mathrm{1}}{{cos}\mathrm{2}{cos}\mathrm{1}}+\frac{{sin}\mathrm{1}{cos}\mathrm{2}}{{cos}\mathrm{1}{cos}\mathrm{2}}+…+\frac{{sin}\mathrm{89}{sin}\mathrm{88}}{{cos}\mathrm{88}{cos}\mathrm{89}}\right] \\ $$$$=\frac{\mathrm{1}}{{sin}\mathrm{1}}\left[\cancel{{tan}\mathrm{1}}−{tan}\mathrm{0}+\cancel{{tan}\mathrm{2}}−\cancel{{tan}\mathrm{1}}\right. \\ $$$$\left.+…+\cancel{{tan}\mathrm{88}}−\cancel{{tan}\mathrm{87}}+{tan}\mathrm{89}−\cancel{{tan}\mathrm{88}}\:\right] \\ $$$$=\frac{\mathrm{1}}{{sin}\mathrm{1}}×{tan}\mathrm{89} \\ $$$$=\frac{\mathrm{1}}{{sin}\mathrm{1}}×\frac{{sin}\mathrm{89}}{{cos}\mathrm{89}} \\ $$$$=\frac{\mathrm{1}}{{sin}\mathrm{1}}×\frac{{cos}\left(\mathrm{90}−\mathrm{89}\right)}{{sin}\left(\mathrm{90}−\mathrm{89}\right)} \\ $$$$=\frac{\mathrm{1}}{{sin}\mathrm{1}}×\frac{{cos}\mathrm{1}}{{sin}\mathrm{1}}=\frac{{cos}\mathrm{1}}{{sin}^{\mathrm{2}} \mathrm{1}}\:\:\left[{proved}\right] \\ $$
Commented by mathlove last updated on 27/Nov/22
$${thanks} \\ $$