Menu Close

Prove-that-1-cot-23-2-1-cot-22-




Question Number 177791 by cortano1 last updated on 09/Oct/22
Prove that              1−cot 23° = (2/(1−cot 22°))
Provethat1cot23°=21cot22°
Answered by som(math1967) last updated on 09/Oct/22
cot45=1   cot(23+22)=1  ⇒((cot22cot23−1)/(cot23+cot22))=1  ⇒cot23cot22=1+cot22+cot23  ⇒−cot23(1−cot22)=1+cot22   ⇒−cot23=((1+cot22)/(1−cot22))  ⇒1−cot23=1+((1+cot22)/(1−cot22))  ∴ 1−cot23=(2/(1−cot22))
cot45=1cot(23+22)=1cot22cot231cot23+cot22=1cot23cot22=1+cot22+cot23cot23(1cot22)=1+cot22cot23=1+cot221cot221cot23=1+1+cot221cot221cot23=21cot22
Answered by blackmamba last updated on 09/Oct/22
 tan 22°=((1−tan 23°)/(1+tan 23°))   cot 22°= ((1+tan 23°)/(1−tan 23°))   ⇒1−cot 22°=1−(((1+tan 23°)/(1−tan 23°)))  ⇒ 1−cot 22° = ((−2tan 23° )/(1−tan 23°))  ⇒(1−cot 23°)×(1−cot 22°)   = (((tan 23°−1)/(tan 23°)))×(((−2tan 23°)/(1−tan 23°)))   = 2 (proved)
tan22°=1tan23°1+tan23°cot22°=1+tan23°1tan23°1cot22°=1(1+tan23°1tan23°)1cot22°=2tan23°1tan23°(1cot23°)×(1cot22°)=(tan23°1tan23°)×(2tan23°1tan23°)=2(proved)

Leave a Reply

Your email address will not be published. Required fields are marked *