Menu Close

prove-that-1-I-0-pi-2-sin-x-tan-x-sin-x-dx-pi-2-2-J-0-pi-2-sin-x-tan-x-sin-x-dx-1-e-1-2-pi-




Question Number 158590 by mnjuly1970 last updated on 06/Nov/21
     prove that   1. I= ∫_0 ^( (π/2)) (( sin( x+tan(x)))/(sin(x)))dx =(π/2)  2. J = ∫_0 ^( (π/2)) ((sin(x−tan(x)))/(sin(x)))dx=((1/e) −(1/2))π
provethat1.I=0π2sin(x+tan(x))sin(x)dx=π22.J=0π2sin(xtan(x))sin(x)dx=(1e12)π
Answered by qaz last updated on 06/Nov/21
I=∫_0 ^(π/2) ((sin x∙cos (tan x)+cos x∙sin (tan x))/(sin x))dx  =∫_0 ^(π/2) cos (tan x)+((sin (tan x))/(tan x))dx............tan x→x  =∫_0 ^∞ (cos x+((sin x)/x))(dx/(1+x^2 ))  =∫_0 ^∞ ((cos x)/(1+x^2 ))+((1/x)−(x/(1+x^2 )))sin xdx  =∫_0 ^∞ L{cos x}∙L^(−1) {(1/(1+x^2 ))}+((1/x)−(x/(1+x^2 )))sin xdx  =∫_0 ^∞ (x/(1+x^2 ))∙sin x+((1/x)−(x/(1+x^2 )))∙sin xdx  =(π/2)  −−−−−−−−−−−−−−−  J=∫_0 ^(π/2) ((sin (x−tan x))/(sin x))dx  =∫_0 ^(π/2) ((sin x∙cos (tan x)−cos x∙sin (tan x))/(sin x))dx  =∫_0 ^(π/2) cos (tan x)−((sin (tan x))/(tan x))dx.........tan x→x  =∫_0 ^∞ (cos x−((sin x)/x))(dx/(1+x^2 ))  =∫_0 ^∞ (((2cos x)/(1+x^2 ))−((sin x)/x))dx  =(π/e)−(π/2)  −−−−−−−−−−−  ∫_0 ^∞ ((sin x)/x)dx=∫_0 ^∞ L{sin x}∙L^(−1) {(1/x)}dx  =∫_0 ^∞ (1/(1+x^2 ))∙1dx=(π/2)  −−−−−−−−−−−−  ∫_0 ^∞ ((L{cos tx})/(1+x^2 ))dx=∫_0 ^∞ (s/((s^2 +x^2 )(1+x^2 )))dx=(π/(2(1+s)))  ⇒∫_0 ^∞ ((cos x)/(1+x^2 ))dx=L^(−1) {(π/(2(1+s)))}_(t=1) =(π/2)e^(−1)
I=0π/2sinxcos(tanx)+cosxsin(tanx)sinxdx=0π/2cos(tanx)+sin(tanx)tanxdxtanxx=0(cosx+sinxx)dx1+x2=0cosx1+x2+(1xx1+x2)sinxdx=0L{cosx}L1{11+x2}+(1xx1+x2)sinxdx=0x1+x2sinx+(1xx1+x2)sinxdx=π2J=0π/2sin(xtanx)sinxdx=0π/2sinxcos(tanx)cosxsin(tanx)sinxdx=0π/2cos(tanx)sin(tanx)tanxdxtanxx=0(cosxsinxx)dx1+x2=0(2cosx1+x2sinxx)dx=πeπ20sinxxdx=0L{sinx}L1{1x}dx=011+x21dx=π20L{costx}1+x2dx=0s(s2+x2)(1+x2)dx=π2(1+s)0cosx1+x2dx=L1{π2(1+s)}t=1=π2e1
Commented by puissant last updated on 06/Nov/21
Ω=∫_0 ^∞ ((cosx)/(x^2 +1))dx = (1/2)∫_(−∞) ^(+∞) ((cosx)/(x^2 +1))dx  = (1/2)Re(∫_(−∞) ^(+∞) (e^(ix) /(x^2 +1))dx) = (1/2)(2iπ•res((e^(ix) /(x^2 +1)),+i))  Ω = iπ•lim_(x→+i) ((e^(iπ) /(x+i)))=iπ×(e^(−1) /(2i)) = (π/(2e))..                  Ω = ∫_0 ^∞ ((cosx)/(x^2 +1)) dx = (π/(2e))..                          ............Le puissant............
Ω=0cosxx2+1dx=12+cosxx2+1dx=12Re(+eixx2+1dx)=12(2iπres(eixx2+1,+i))Ω=iπlimx+i(eiπx+i)=iπ×e12i=π2e..Ω=0cosxx2+1dx=π2e..Lepuissant

Leave a Reply

Your email address will not be published. Required fields are marked *