prove-that-1-I-0-pi-2-sin-x-tan-x-sin-x-dx-pi-2-2-J-0-pi-2-sin-x-tan-x-sin-x-dx-1-e-1-2-pi- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 158590 by mnjuly1970 last updated on 06/Nov/21 provethat1.I=∫0π2sin(x+tan(x))sin(x)dx=π22.J=∫0π2sin(x−tan(x))sin(x)dx=(1e−12)π Answered by qaz last updated on 06/Nov/21 I=∫0π/2sinx⋅cos(tanx)+cosx⋅sin(tanx)sinxdx=∫0π/2cos(tanx)+sin(tanx)tanxdx…………tanx→x=∫0∞(cosx+sinxx)dx1+x2=∫0∞cosx1+x2+(1x−x1+x2)sinxdx=∫0∞L{cosx}⋅L−1{11+x2}+(1x−x1+x2)sinxdx=∫0∞x1+x2⋅sinx+(1x−x1+x2)⋅sinxdx=π2−−−−−−−−−−−−−−−J=∫0π/2sin(x−tanx)sinxdx=∫0π/2sinx⋅cos(tanx)−cosx⋅sin(tanx)sinxdx=∫0π/2cos(tanx)−sin(tanx)tanxdx………tanx→x=∫0∞(cosx−sinxx)dx1+x2=∫0∞(2cosx1+x2−sinxx)dx=πe−π2−−−−−−−−−−−∫0∞sinxxdx=∫0∞L{sinx}⋅L−1{1x}dx=∫0∞11+x2⋅1dx=π2−−−−−−−−−−−−∫0∞L{costx}1+x2dx=∫0∞s(s2+x2)(1+x2)dx=π2(1+s)⇒∫0∞cosx1+x2dx=L−1{π2(1+s)}t=1=π2e−1 Commented by puissant last updated on 06/Nov/21 Ω=∫0∞cosxx2+1dx=12∫−∞+∞cosxx2+1dx=12Re(∫−∞+∞eixx2+1dx)=12(2iπ∙res(eixx2+1,+i))Ω=iπ∙limx→+i(eiπx+i)=iπ×e−12i=π2e..Ω=∫0∞cosxx2+1dx=π2e..…………Lepuissant………… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Using-only-the-integers-4-to-8-how-many-even-numbers-can-be-formed-if-each-must-lie-between-4000-and-9000-Next Next post: Question-27517 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.