Menu Close

prove-that-1-lim-n-0-n-1-x-n-n-e-x-dx-1-1-




Question Number 33343 by prof Abdo imad last updated on 14/Apr/18
prove that ∀ α ∈]1,+∞[  lim_(n→∞)   ∫_0 ^n  (1+(x/n))^n  e^(−αx) dx = (1/(α−1)) .
provethatα]1,+[limn0n(1+xn)neαxdx=1α1.
Commented by abdo imad last updated on 17/Apr/18
let put I_n = ∫_0 ^n  (1+(x/n))^n  e^(−αx) dx = ∫_R f_n (x)dx  with  f_n (x) = (1+(x/n))^n  e^(−αx)  χ_([0,n[) (x)dx  we have  f_n (x)→^(c.s)   f(x) = e^((1−α)x)  if x≥0 and f(x)=0 if x<0   but we have (1+(x/n))^n =e^(nln(1+(x/n)))    but ln(1+(x/n))≤(x/n) ⇒  nln(1+(x/n)) ≤x  ⇒ (1+(x/n))^n  e^(−αx)  ≤ g(x)=_ e^((1−α)x)    theorem of convergence dominee give  ∫_R f_n (x)dx _(n→∞) → ∫_0 ^∞   e^((1−α)x) dx =(1/(1−α))[ e^((1−α)x) ]_0 ^(+∞)   =((−1)/(1−α)) = (1/(α−1)) ⇒ lim_(n→∞)  I_n   = (1/(1−α))  .
letputIn=0n(1+xn)neαxdx=Rfn(x)dxwithfn(x)=(1+xn)neαxχ[0,n[(x)dxwehavefn(x)c.sf(x)=e(1α)xifx0andf(x)=0ifx<0butwehave(1+xn)n=enln(1+xn)butln(1+xn)xnnln(1+xn)x(1+xn)neαxg(x)=e(1α)xtheoremofconvergencedomineegiveRfn(x)dxn0e(1α)xdx=11α[e(1α)x]0+=11α=1α1limnIn=11α.
Commented by prof Abdo imad last updated on 17/Apr/18
lim I_n = (1/(α−1)) .
limIn=1α1.

Leave a Reply

Your email address will not be published. Required fields are marked *