Menu Close

Prove-that-1-m-C-0-n-m-1-C-1-n-n-1-m-2-C-2-n-n-1-2-1-m-n-C-n-m-n-1-m-n-2-m-2n-m-n-




Question Number 23357 by Tinkutara last updated on 29/Oct/17
Prove that (1/(m!))C_0 +(n/((m+1)!))C_1 +((n(nāˆ’1))/((m+2)!))C_2   +...+((n(nāˆ’1)...2.1)/((m+n)!))C_n =  (((m+n+1)(m+n+2)...(m+2n))/((m+n)!)).
$${Prove}\:{that}\:\frac{\mathrm{1}}{{m}!}{C}_{\mathrm{0}} +\frac{{n}}{\left({m}+\mathrm{1}\right)!}{C}_{\mathrm{1}} +\frac{{n}\left({n}āˆ’\mathrm{1}\right)}{\left({m}+\mathrm{2}\right)!}{C}_{\mathrm{2}} \\ $$$$+…+\frac{{n}\left({n}āˆ’\mathrm{1}\right)…\mathrm{2}.\mathrm{1}}{\left({m}+{n}\right)!}{C}_{{n}} = \\ $$$$\frac{\left({m}+{n}+\mathrm{1}\right)\left({m}+{n}+\mathrm{2}\right)…\left({m}+\mathrm{2}{n}\right)}{\left({m}+{n}\right)!}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *