Question Number 165418 by mnjuly1970 last updated on 01/Feb/22
$$ \\ $$$$\:\:\:\:\:{prove}\:\:{that}\:: \\ $$$$ \\ $$$$\:\:\:\mathrm{1}^{\ast} :\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\zeta\:\left(\mathrm{2}{n}\:\right)−\mathrm{1}}{\:\mathrm{1}+\:{n}}\:=\:\frac{\mathrm{3}}{\mathrm{2}\:}\:\:−\:\mathrm{ln}\:\left(\pi\:\right) \\ $$$$\:\:\:\mathrm{2}^{\:\ast\ast} :\:\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\:\left(−\mathrm{1}\right)^{\:{n}} \left(\:\:\zeta\:\left({n}\:\right)−\mathrm{1}\:\right)}{\mathrm{1}\:+\:{n}}=\frac{\mathrm{3}}{\mathrm{2}}\:+\frac{\gamma}{\mathrm{2}}\:−\frac{\mathrm{ln}\left(\mathrm{8}\pi\right)}{\mathrm{2}} \\ $$$$\:\:\:\mathrm{3}^{\:\ast\ast} \::\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\zeta\:\left(\mathrm{2}{n}\:\right)−\mathrm{1}}{\mathrm{1}+\:\mathrm{2}{n}}\:=\:\frac{\mathrm{3}}{\mathrm{2}}\:−\frac{\mathrm{ln}\left(\mathrm{4}\pi\right)}{\mathrm{2}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:−−−−\:{m}.{n}\:−−−− \\ $$$$ \\ $$