Menu Close

Prove-that-1-n-r-n-1-r-n-1-r-1-2-n-r-n-r-1-n-1-r-3-n-0-n-1-n-2-n-n-2-n-




Question Number 54740 by gunawan last updated on 10/Feb/19
Prove that  1. ((n),(r) ) =  (((n−1)),((    r)) ) +  (((n−1)),(( r−1)) )  2. ((n),(r) ) + (((   n)),((r−1)) ) =  (((n+1)),((    r)) )   3.  ((n),(0) )+ ((n),(1) )+ ((n),(2) )+..+ ((n),(n) )=2^n
Provethat1.(nr)=(n1r)+(n1r1)2.(nr)+(nr1)=(n+1r)3.(n0)+(n1)+(n2)+..+(nn)=2n
Answered by Kunal12588 last updated on 10/Feb/19
3.^n C_0 +^n C_1 +^n C_2 +...+^n C_n =2^n         eq^n  1  from binomial expansion  (a+b)^p =^p C_0 a^p +^p C_1 a^(p−1) b^1 +...+^p C_r a^(p−r) b^r +...+^p C_p b^p         [r<p]  comparing with the question  ∵ 1^(anything) =1  eq^n   1 can be written as :   ^n C_0 1^n +^n C_1 1^(n−1) 1^1 +^n C_2 1^(n−2) 1^2 +...+^n C_n 1^n   =(1+1)^n =2^n      proved
3.nC0+nC1+nC2++nCn=2neqn1frombinomialexpansion(a+b)p=pC0ap+pC1ap1b1++pCraprbr++pCpbp[r<p]comparingwiththequestion1anything=1eqn1canbewrittenas:nC01n+nC11n111+nC21n212++nCn1n=(1+1)n=2nproved
Commented by gunawan last updated on 10/Feb/19
nice solution  thank you Sir
nicesolutionthankyouSir
Commented by tanmay.chaudhury50@gmail.com last updated on 10/Feb/19
another way (1+x)^n =nc_0 +nc_1 x+...+nc_n x^n   put x=1  2^n =nc_0 +nc_1 +...+nc_n
anotherway(1+x)n=nc0+nc1x++ncnxnputx=12n=nc0+nc1++ncn
Commented by maxmathsup by imad last updated on 11/Feb/19
3) let p(x) =Σ_(k=0) ^n  C_n ^k  x^k   =(x+1)^n      x=1 ⇒ Σ_(k=0) ^n  C_n ^k   =2^n  ⇒C_n ^0  +C_n ^1  +C_n ^2  +....+C_n ^n   =2^n  .
3)letp(x)=k=0nCnkxk=(x+1)nx=1k=0nCnk=2nCn0+Cn1+Cn2+.+Cnn=2n.
Answered by Kunal12588 last updated on 10/Feb/19
^n C_r =^(n−1) C_r +^(n−1) C_(r−1)   1. RHS  ^(n−1) C_r +^(n−1) C_(r−1) =(((n−1)!)/(r!(n−1−r)!))+(((n−1)!)/((r−1)!(n−r)!))  =(((n−1)!)/(r(r−1)!(n−1−r)!))+(((n−1)!)/((r−1)!(n−r)(n−1−r)!))  =(((n−1)!)/((r−1)!(n−1−r)!))((1/r)+(1/(n−r)))  =(((n−1)!)/((r−1)!(n−1−r)!))((n/(r(n−r))))  =((n(n−1)!)/(r(r−1)!(n−r)(n−1−r!)))=((n!)/(r!(n−r)!))  = ^n C_r   = LHS   proved
nCr=n1Cr+n1Cr11.RHSn1Cr+n1Cr1=(n1)!r!(n1r)!+(n1)!(r1)!(nr)!=(n1)!r(r1)!(n1r)!+(n1)!(r1)!(nr)(n1r)!=(n1)!(r1)!(n1r)!(1r+1nr)=(n1)!(r1)!(n1r)!(nr(nr))=n(n1)!r(r1)!(nr)(n1r!)=n!r!(nr)!=nCr=LHSproved
Answered by Kunal12588 last updated on 10/Feb/19
2.^n C_r +^n C_(r−1) =^(n+1) C_r   LHS  =((n!)/(r!(n−r)!)) + ((n!)/((r−1)!(n−r+1)!))  =((n!)/((r−1)!(n−r)!))((1/r)+(1/(n−r+1)))  =(((n+1)!)/(r!(n+1−r)!))=^(n+1) C_r =RHS  proved
2.nCr+nCr1=n+1CrLHS=n!r!(nr)!+n!(r1)!(nr+1)!=n!(r1)!(nr)!(1r+1nr+1)=(n+1)!r!(n+1r)!=n+1Cr=RHSproved
Commented by Kunal12588 last updated on 10/Feb/19
same as (1) just replace (n−1) with n
sameas(1)justreplace(n1)withn

Leave a Reply

Your email address will not be published. Required fields are marked *