Menu Close

Prove-that-1-tan-x-1-tan-4x-2-




Question Number 128788 by bramlexs22 last updated on 10/Jan/21
 Prove that (1+tan x)(1+tan 4x) =2?
Provethat(1+tanx)(1+tan4x)=2?
Commented by bramlexs22 last updated on 10/Jan/21
i think its not true !
ithinkitsnottrue!
Commented by mr W last updated on 10/Jan/21
it is not true!
itisnottrue!
Commented by liberty last updated on 10/Jan/21
i think it should be (1+tan x)(1+tan 44x)=2
ithinkitshouldbe(1+tanx)(1+tan44x)=2
Commented by mr W last updated on 10/Jan/21
try with x=0!    generally:  (1+tan nx)(1+tan mx)≠constant!
trywithx=0!generally:(1+tannx)(1+tanmx)constant!
Commented by liberty last updated on 10/Jan/21
for nx+mx = (π/4) it is true!
fornx+mx=π4itistrue!
Commented by liberty last updated on 10/Jan/21
example (1+tan 2°)(1+tan 43°)=2   (1+tan 13°)(1+tan 32°)=2
example(1+tan2°)(1+tan43°)=2(1+tan13°)(1+tan32°)=2
Commented by mr W last updated on 10/Jan/21
x is variable, it stands for any value,  not a particular value.
xisvariable,itstandsforanyvalue,notaparticularvalue.
Commented by benjo_mathlover last updated on 10/Jan/21
only correct for A+B=45° ⇒(1+tan A)(1+tan B)=2
onlycorrectforA+B=45°(1+tanA)(1+tanB)=2
Answered by Olaf last updated on 10/Jan/21
f(x) = (1+tanx)(1+tan4x)  f(x) = (((cosx+sinx)(cos4x+sin4x))/(cosxcos4x))  f(x) = ((cosxcos4x+sinxsin4x+sinxcos4x+cosxsin4x)/(cosxcos4x))  f(x) = ((cos3x+sin5x)/(cosxcos4x))  f(x) = ((cos3x+cos((π/2)−5x))/(cosxcos4x))  f(x) = ((2cos(((3x+(π/2)−5x)/2))cos(((3x−(π/2)+5x)/2)))/(cosxcos4x))  f(x) = ((2cos(x−(π/4))cos(4x−(π/4)))/(cosxcos4x))  f(x) = 2 ⇔ cos(x−(π/4))cos(4x−(π/4)) = cosxcos4x  ⇔ (1/2)[cos3x+cos(5x−(π/2))] = (1/2)[cos3x+cos5x]  ⇔ cos(5x−(π/2)) = cos5x  ⇔ 5x−(π/2) = ±5x+2kπ, k∈Z  ⇔ x = (π/(20)) +((kπ)/(10)), k∈Z  S = {(π/(20))+((kπ)/(10)), k∈Z}  Numerically we can verify for example  that, for k = 0 :  (1+tan(π/(20)))(1+tan(π/5)) = 2
f(x)=(1+tanx)(1+tan4x)f(x)=(cosx+sinx)(cos4x+sin4x)cosxcos4xf(x)=cosxcos4x+sinxsin4x+sinxcos4x+cosxsin4xcosxcos4xf(x)=cos3x+sin5xcosxcos4xf(x)=cos3x+cos(π25x)cosxcos4xf(x)=2cos(3x+π25x2)cos(3xπ2+5x2)cosxcos4xf(x)=2cos(xπ4)cos(4xπ4)cosxcos4xf(x)=2cos(xπ4)cos(4xπ4)=cosxcos4x12[cos3x+cos(5xπ2)]=12[cos3x+cos5x]cos(5xπ2)=cos5x5xπ2=±5x+2kπ,kZx=π20+kπ10,kZS={π20+kπ10,kZ}Numericallywecanverifyforexamplethat,fork=0:(1+tanπ20)(1+tanπ5)=2
Commented by liberty last updated on 10/Jan/21
correct sir
correctsir

Leave a Reply

Your email address will not be published. Required fields are marked *