Menu Close

prove-that-1-x-1-1-x-4-




Question Number 80039 by jagoll last updated on 30/Jan/20
prove that  (1+x)(1+(1/x))≥4
provethat(1+x)(1+1x)4
Commented by mr W last updated on 30/Jan/20
only for x∈R^+   1+x≥2(√x)  1+(1/x)≥2(1/( (√x)))  (1+x)(1+(1/x))≥2(√x)×2(1/( (√x)))=4  or  (1+x)(1+(1/x))=2+x+(1/x)≥2+2=4    for x∈R^−   (1+x)(1+(1/x))=2+x+(1/x)=2−(−x+(1/(−x)))≤2−2=0
onlyforxR+1+x2x1+1x21x(1+x)(1+1x)2x×21x=4or(1+x)(1+1x)=2+x+1x2+2=4forxR(1+x)(1+1x)=2+x+1x=2(x+1x)22=0
Commented by Tony Lin last updated on 30/Jan/20
[1^2 +((√x))^2 ][1^2 +((1/( (√x))))^2 ]≥(1+1)^2 =4
[12+(x)2][12+(1x)2](1+1)2=4
Commented by MJS last updated on 30/Jan/20
y=(1+x)(1+(1/x))  defined for x∈R\{0}  (1+x)(1+(1/x))<4  x+(1/x)<2  (1) x>0  x^2 −2x+1<0  (x−1)^2 <0 wrong ⇒ (1+x)(1+(1/x))≥4  (2) x<0  x^2 −2x+1>0  (x−1)^2 >0 true ∀x<0 ⇒ (1+x)(1+(1/x))<4   { (((1+x)(1+(1/x))≥4; x>0)),(((1+x)(1+(1/x))<4; x<0)) :}
y=(1+x)(1+1x)definedforxR{0}(1+x)(1+1x)<4x+1x<2(1)x>0x22x+1<0(x1)2<0wrong(1+x)(1+1x)4(2)x<0x22x+1>0(x1)2>0truex<0(1+x)(1+1x)<4{(1+x)(1+1x)4;x>0(1+x)(1+1x)<4;x<0
Commented by mr W last updated on 30/Jan/20
typo sir?  (1+x)(1+(1/x))<4; x<0  should be:  (1+x)(1+(1/x))≤0; x<0
typosir?(1+x)(1+1x)<4;x<0shouldbe:(1+x)(1+1x)0;x<0
Commented by MJS last updated on 30/Jan/20
You are right but with my method I only  examined if it′s <4.
YouarerightbutwithmymethodIonlyexaminedifits<4.
Commented by jagoll last updated on 31/Jan/20
thank you
thankyou
Answered by $@ty@m123 last updated on 31/Jan/20
Let y=(1+x)(1+(1/x))  ⇒y=2+x+(1/x)  (dy/dx)=1−(1/x^2 )  For max. or min.  (dy/dx)=0  1−(1/x^2 )=0  ⇒x=±1  y∣_(x=1)  =4,  y∣_(x=−1) =0  (d^2 y/dx^2 )=(1/x^3 )  [(d^2 y/dx^2 )]_(x=1) =1>0  ∴ y is mininmum at x=1  and min.(y)=4
Lety=(1+x)(1+1x)y=2+x+1xdydx=11x2Formax.ormin.dydx=011x2=0x=±1yx=1=4,yx=1=0d2ydx2=1x3[d2ydx2]x=1=1>0yismininmumatx=1andmin.(y)=4

Leave a Reply

Your email address will not be published. Required fields are marked *