Question Number 80039 by jagoll last updated on 30/Jan/20
$${prove}\:{that} \\ $$$$\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)\geqslant\mathrm{4} \\ $$
Commented by mr W last updated on 30/Jan/20
$${only}\:{for}\:{x}\in{R}^{+} \\ $$$$\mathrm{1}+{x}\geqslant\mathrm{2}\sqrt{{x}} \\ $$$$\mathrm{1}+\frac{\mathrm{1}}{{x}}\geqslant\mathrm{2}\frac{\mathrm{1}}{\:\sqrt{{x}}} \\ $$$$\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)\geqslant\mathrm{2}\sqrt{{x}}×\mathrm{2}\frac{\mathrm{1}}{\:\sqrt{{x}}}=\mathrm{4} \\ $$$${or} \\ $$$$\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)=\mathrm{2}+{x}+\frac{\mathrm{1}}{{x}}\geqslant\mathrm{2}+\mathrm{2}=\mathrm{4} \\ $$$$ \\ $$$${for}\:{x}\in{R}^{−} \\ $$$$\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)=\mathrm{2}+{x}+\frac{\mathrm{1}}{{x}}=\mathrm{2}−\left(−{x}+\frac{\mathrm{1}}{−{x}}\right)\leqslant\mathrm{2}−\mathrm{2}=\mathrm{0} \\ $$
Commented by Tony Lin last updated on 30/Jan/20
$$\left[\mathrm{1}^{\mathrm{2}} +\left(\sqrt{{x}}\right)^{\mathrm{2}} \right]\left[\mathrm{1}^{\mathrm{2}} +\left(\frac{\mathrm{1}}{\:\sqrt{{x}}}\right)^{\mathrm{2}} \right]\geqslant\left(\mathrm{1}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{4} \\ $$
Commented by MJS last updated on 30/Jan/20
$${y}=\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right) \\ $$$$\mathrm{defined}\:\mathrm{for}\:{x}\in\mathbb{R}\backslash\left\{\mathrm{0}\right\} \\ $$$$\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)<\mathrm{4} \\ $$$${x}+\frac{\mathrm{1}}{{x}}<\mathrm{2} \\ $$$$\left(\mathrm{1}\right)\:{x}>\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}<\mathrm{0} \\ $$$$\left({x}−\mathrm{1}\right)^{\mathrm{2}} <\mathrm{0}\:\mathrm{wrong}\:\Rightarrow\:\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)\geqslant\mathrm{4} \\ $$$$\left(\mathrm{2}\right)\:{x}<\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}>\mathrm{0} \\ $$$$\left({x}−\mathrm{1}\right)^{\mathrm{2}} >\mathrm{0}\:\mathrm{true}\:\forall{x}<\mathrm{0}\:\Rightarrow\:\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)<\mathrm{4} \\ $$$$\begin{cases}{\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)\geqslant\mathrm{4};\:{x}>\mathrm{0}}\\{\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)<\mathrm{4};\:{x}<\mathrm{0}}\end{cases} \\ $$
Commented by mr W last updated on 30/Jan/20
$${typo}\:{sir}? \\ $$$$\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)<\mathrm{4};\:{x}<\mathrm{0} \\ $$$${should}\:{be}: \\ $$$$\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)\leqslant\mathrm{0};\:{x}<\mathrm{0} \\ $$
Commented by MJS last updated on 30/Jan/20
$$\mathrm{You}\:\mathrm{are}\:\mathrm{right}\:\mathrm{but}\:\mathrm{with}\:\mathrm{my}\:\mathrm{method}\:\mathrm{I}\:\mathrm{only} \\ $$$$\mathrm{examined}\:\mathrm{if}\:\mathrm{it}'\mathrm{s}\:<\mathrm{4}. \\ $$
Commented by jagoll last updated on 31/Jan/20
$${thank}\:{you}\: \\ $$
Answered by $@ty@m123 last updated on 31/Jan/20
$${Let}\:{y}=\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right) \\ $$$$\Rightarrow{y}=\mathrm{2}+{x}+\frac{\mathrm{1}}{{x}} \\ $$$$\frac{{dy}}{{dx}}=\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$$${For}\:{max}.\:{or}\:{min}. \\ $$$$\frac{{dy}}{{dx}}=\mathrm{0} \\ $$$$\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Rightarrow{x}=\pm\mathrm{1} \\ $$$${y}\mid_{{x}=\mathrm{1}} \:=\mathrm{4}, \\ $$$${y}\mid_{{x}=−\mathrm{1}} =\mathrm{0} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\frac{\mathrm{1}}{{x}^{\mathrm{3}} } \\ $$$$\left[\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\right]_{{x}=\mathrm{1}} =\mathrm{1}>\mathrm{0} \\ $$$$\therefore\:{y}\:{is}\:{mininmum}\:{at}\:{x}=\mathrm{1} \\ $$$${and}\:{min}.\left({y}\right)=\mathrm{4} \\ $$