Menu Close

prove-that-1-x-n-1-nx-n-n-1-2-x-2-n-n-1-n-2-3-x-3-n-n-n-using-a-suitable-expansion-method-hence-determine-the-expansion-of-2-001-89-




Question Number 55815 by Rio Mike last updated on 04/Mar/19
prove that  (1+x)^n = 1+nx +((n(n−1))/(2!))x^2 +((n(n−1)(n−2))/(3!))x^3 +...n(n−n)  using a suitable expansion method  hence determine the expansion of  (2.001)^(89)
provethat(1+x)n=1+nx+n(n1)2!x2+n(n1)(n2)3!x3+n(nn)usingasuitableexpansionmethodhencedeterminetheexpansionof(2.001)89
Answered by Kunal12588 last updated on 04/Mar/19
we can expand (1+x)^n  using binomial  expansion.  (a+b)^n =^n C_0 a^n +^n C_1 a^(n−1) b^1 +...+^n C_r a^(n−r) b^r +...+^n C_n b^n   put a=1 and b=x  (1+x)^n =^n C_0 1^n +^n C_1 1^(n−1) x+...+^n C_n x^n   =1+((n(n−1)!)/((n−1)!))x+((n(n−1)(n−2)!)/(2!(n−2)!))x^2 +...+x^n   =1+nx+((n(n−1))/(2!))x^2 +((n(n−1)(n−2))/(3!))x^3 +...+x^n   (2.001)^(89) =(1+1.001)^(89)   =1+89(1.001)+((89×88)/2)(1.001)^2 +...+(1.001)^(89)
wecanexpand(1+x)nusingbinomialexpansion.(a+b)n=nC0an+nC1an1b1++nCranrbr++nCnbnputa=1andb=x(1+x)n=nC01n+nC11n1x++nCnxn=1+n(n1)!(n1)!x+n(n1)(n2)!2!(n2)!x2++xn=1+nx+n(n1)2!x2+n(n1)(n2)3!x3++xn(2.001)89=(1+1.001)89=1+89(1.001)+89×882(1.001)2++(1.001)89

Leave a Reply

Your email address will not be published. Required fields are marked *