Menu Close

prove-that-111-divide-10-6n-2-10-3n-1-1-




Question Number 43540 by abdo.msup.com last updated on 11/Sep/18
prove that 111 divide 10^(6n+2)  +10^(3n+1)  +1
provethat111divide106n+2+103n+1+1
Answered by tanmay.chaudhury50@gmail.com last updated on 12/Sep/18
10^(6n) ×100+10^(3n) ×10+1  (10^3 )^(2n) ×100+(10^3 )^n ×10+1  (999+1)^(2n) ×100+(999+1)^n ×10+1  100×{f(999)+1}+10×{g(999)+1}+1  =100×f(999)+10×g(999)+100+10+1  999 =111×9  terms containing 999 are divisble by 111 and  100+10+1=111 is divisble by 111
106n×100+103n×10+1(103)2n×100+(103)n×10+1(999+1)2n×100+(999+1)n×10+1100×{f(999)+1}+10×{g(999)+1}+1=100×f(999)+10×g(999)+100+10+1999=111×9termscontaining999aredivisbleby111and100+10+1=111isdivisbleby111
Answered by tanmay.chaudhury50@gmail.com last updated on 12/Sep/18
10^(6n) ×100+10^(3n) ×10+1  (10^3 )^(2n) ×100+(10^3 )^n ×10+1  (999+1)^(2n) ×100+(999+1)^n ×10+1  100×{f(999)+1}+10×{g(999)+1}+1  =100×f(999)+10×g(999)+100+10+1  999 =111×9  terms containing 999 are divisble by 111 and  100+10+1=111 is divisble by 111
106n×100+103n×10+1(103)2n×100+(103)n×10+1(999+1)2n×100+(999+1)n×10+1100×{f(999)+1}+10×{g(999)+1}+1=100×f(999)+10×g(999)+100+10+1999=111×9termscontaining999aredivisbleby111and100+10+1=111isdivisbleby111

Leave a Reply

Your email address will not be published. Required fields are marked *