Prove-that-16arctan-1-5-4arctan-1-239-pi- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 79124 by ~blr237~ last updated on 22/Jan/20 Provethat16arctan(15)−4arctan(1239)=π Commented by mind is power last updated on 23/Jan/20 niceone Answered by ~blr237~ last updated on 27/Jan/20 lettakez=a+ibwitha≠0wecanprovethatarz≡arctan(ba)[2π]letnamedA=4arctan(15)−arctan(1239)A≡4arg(5+i)−arg(239+i)[2π]A≡arg[(5+i)4]−arg[(239+i)][2π]A≡arg[((476+480i)]−arg(239+i)[2π]A≡arg[(476+480i)(239−i)2392−1][2π]A≡arg[476×239+480+i(480×239−476)238×240][2π]A≡arg[114244+114244i57120][2π]A≡arg[11424457120(1+i)][2π]A≡0+arg(1+i)[2π]A≡π4[2π]suchasarctan(1239),arctan(15)∈[0,π2]wehaveafterframingA:−π2⩽A⩽2πSofinalyA=π4 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Calculate-19-93-mod-81-Next Next post: x-0-pi-and-a-b-real-numbers-fixed-Find-the-range-of-function-g-x-1-a-2-cot-2-x-1-b-2-cot-2-x-1-cot-2-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.