Menu Close

prove-that-2-3-2n-2-3-2n-is-an-even-integer-and-that-2-3-2n-2-3-2n-w-3-for-some-integers-w-for-all-integer-n-1-




Question Number 17867 by Mr easymsn last updated on 11/Jul/17
prove that (2+(√3))^(2n) +(2−(√3))^(2n) is an  even integer and that (2+(√3))^(2n) −(2−(√3))^(2n) =w(√3)  for some integers w,for all integer n≥1.
provethat(2+3)2n+(23)2nisanevenintegerandthat(2+3)2n(23)2n=w3forsomeintegersw,forallintegern1.
Answered by alex041103 last updated on 11/Jul/17
We expand using  (a+b)^n =Σ_(k=0) ^n  ((n),(k) ) a^(n−k)  b^k   We get  (2+(√3))^(2n)  + (2−(√3))^(2n) =  =Σ_(k=0) ^(2n)  (((2n)),(( k)) ) 2^(2n−k) ((√3))^k [1+(−1)^k ]  When k≡1(mod 2)   (((2n)),(( k)) ) 2^(2n−k) ((√3))^k [1+(−1)^k ]=0  That′s why k≡0(mod 2)   ⇒(2+(√3))^(2n)  + (2−(√3))^(2n) =  =Σ_(k=0) ^n  (((2n)),(( 2k)) ) 2^(2n−2k) (3^(1/2) )^(2k) ×2  =2Σ_(k=0) ^n  (((2n)),(( 2k)) ) 2^(2n−2k) ×3^k   It′s easy to show that   Σ_(k=0) ^n  (((2n)),(( 2k)) ) 2^(2n−2k) ×3^k  ∈ N  ⇒(((2+(√3))^(2n) +(2−(√3))^(2n) )/2)∈N  The same procedure works for the next statement  (2+(√3))^(2n)  − (2−(√3))^(2n) =  =Σ_(k=0) ^(2n)  (((2n)),(( k)) ) 2^(2n−k) ((√3))^k [1+(−1)^(k+1) ]  Then we substitute k=2t+1 and  (2+(√3))^(2n)  − (2−(√3))^(2n) =  =Σ_(k=0) ^(n−1)  (((    2n)),(( 2k+1)) ) 2^(2n−2k) ((√3))3^k   =(√3)Σ_(k=0) ^(n−1)  (((    2n)),(( 2k+1)) ) 2^(2n−2k) 3^k   ⇒(2+(√3))^(2n)  − (2−(√3))^(2n) =w(√3), w∈N
Weexpandusing(a+b)n=nk=0(nk)ankbkWeget(2+3)2n+(23)2n==2nk=0(2nk)22nk(3)k[1+(1)k]Whenk1(mod2)(2nk)22nk(3)k[1+(1)k]=0Thatswhyk0(mod2)(2+3)2n+(23)2n==nk=0(2n2k)22n2k(31/2)2k×2=2nk=0(2n2k)22n2k×3kItseasytoshowthatnk=0(2n2k)22n2k×3kN(2+3)2n+(23)2n2NThesameprocedureworksforthenextstatement(2+3)2n(23)2n==2nk=0(2nk)22nk(3)k[1+(1)k+1]Thenwesubstitutek=2t+1and(2+3)2n(23)2n==n1k=0(2n2k+1)22n2k(3)3k=3n1k=0(2n2k+1)22n2k3k(2+3)2n(23)2n=w3,wN
Commented by alex041103 last updated on 12/Jul/17
Is there a problem, sir?
Isthereaproblem,sir?

Leave a Reply

Your email address will not be published. Required fields are marked *