Menu Close

Prove-that-2-5-1-3-2-5-1-3-is-a-rational-number-




Question Number 18386 by Tinkutara last updated on 19/Jul/17
Prove that ((2 + (√5)))^(1/3)  + ((2 − (√5)))^(1/3)  is a  rational number.
$$\mathrm{Prove}\:\mathrm{that}\:\sqrt[{\mathrm{3}}]{\mathrm{2}\:+\:\sqrt{\mathrm{5}}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{2}\:−\:\sqrt{\mathrm{5}}}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{rational}\:\mathrm{number}. \\ $$
Commented by mrW1 last updated on 19/Jul/17
 ((2 + (√5)))^(1/3)  + ((2 − (√5)))^(1/3)  =1
$$\:\sqrt[{\mathrm{3}}]{\mathrm{2}\:+\:\sqrt{\mathrm{5}}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{2}\:−\:\sqrt{\mathrm{5}}}\:=\mathrm{1} \\ $$
Answered by mrW1 last updated on 20/Jul/17
x= ((2 + (√5)))^(1/3)   y= ((2 − (√5)))^(1/3)   let u=x+y  xy= (((2 + (√5))(2−(√5))))^(1/3) =^3 (√(4−5))=^3 (√(−1))=−1  x^3 +y^3 =(2+(√5))+(2−(√5))=4  ⇒(x+y)(x^2 +y^2 −xy)=4  ⇒(x+y)(x^2 +y^2 +2xy−3xy)=4  ⇒(x+y)[(x+y)^2 −3xy]=4  ⇒u(u^2 +3)=4  u^3 +3u−4=0  u^3 −u+4u−4=0  (u^2 −1)u+4(u−1)=0  (u−1)[u(u+1)+4]=0  (u−1)(u^2 +u+4)=0  (u−1)[(u+(1/2))^2 +((15)/4)]=0  ⇒u=1  i.e.  ((2 + (√5)))^(1/3)  + ((2 − (√5)))^(1/3)  =1
$$\mathrm{x}=\:\sqrt[{\mathrm{3}}]{\mathrm{2}\:+\:\sqrt{\mathrm{5}}} \\ $$$$\mathrm{y}=\:\sqrt[{\mathrm{3}}]{\mathrm{2}\:−\:\sqrt{\mathrm{5}}} \\ $$$$\mathrm{let}\:\mathrm{u}=\mathrm{x}+\mathrm{y} \\ $$$$\mathrm{xy}=\:\sqrt[{\mathrm{3}}]{\left(\mathrm{2}\:+\:\sqrt{\mathrm{5}}\right)\left(\mathrm{2}−\sqrt{\mathrm{5}}\right)}=\:^{\mathrm{3}} \sqrt{\mathrm{4}−\mathrm{5}}=\:^{\mathrm{3}} \sqrt{−\mathrm{1}}=−\mathrm{1} \\ $$$$\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} =\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)+\left(\mathrm{2}−\sqrt{\mathrm{5}}\right)=\mathrm{4} \\ $$$$\Rightarrow\left(\mathrm{x}+\mathrm{y}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{xy}\right)=\mathrm{4} \\ $$$$\Rightarrow\left(\mathrm{x}+\mathrm{y}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{2xy}−\mathrm{3xy}\right)=\mathrm{4} \\ $$$$\Rightarrow\left(\mathrm{x}+\mathrm{y}\right)\left[\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} −\mathrm{3xy}\right]=\mathrm{4} \\ $$$$\Rightarrow\mathrm{u}\left(\mathrm{u}^{\mathrm{2}} +\mathrm{3}\right)=\mathrm{4} \\ $$$$\mathrm{u}^{\mathrm{3}} +\mathrm{3u}−\mathrm{4}=\mathrm{0} \\ $$$$\mathrm{u}^{\mathrm{3}} −\mathrm{u}+\mathrm{4u}−\mathrm{4}=\mathrm{0} \\ $$$$\left(\mathrm{u}^{\mathrm{2}} −\mathrm{1}\right)\mathrm{u}+\mathrm{4}\left(\mathrm{u}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\left(\mathrm{u}−\mathrm{1}\right)\left[\mathrm{u}\left(\mathrm{u}+\mathrm{1}\right)+\mathrm{4}\right]=\mathrm{0} \\ $$$$\left(\mathrm{u}−\mathrm{1}\right)\left(\mathrm{u}^{\mathrm{2}} +\mathrm{u}+\mathrm{4}\right)=\mathrm{0} \\ $$$$\left(\mathrm{u}−\mathrm{1}\right)\left[\left(\mathrm{u}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{15}}{\mathrm{4}}\right]=\mathrm{0} \\ $$$$\Rightarrow\mathrm{u}=\mathrm{1} \\ $$$$\mathrm{i}.\mathrm{e}.\:\:\sqrt[{\mathrm{3}}]{\mathrm{2}\:+\:\sqrt{\mathrm{5}}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{2}\:−\:\sqrt{\mathrm{5}}}\:=\mathrm{1} \\ $$
Commented by Tinkutara last updated on 20/Jul/17
Thanks Sir!
$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *