Menu Close

Prove-that-2-5-1-3-2-5-1-3-is-a-rational-number-




Question Number 18386 by Tinkutara last updated on 19/Jul/17
Prove that ((2 + (√5)))^(1/3)  + ((2 − (√5)))^(1/3)  is a  rational number.
Provethat2+53+253isarationalnumber.
Commented by mrW1 last updated on 19/Jul/17
 ((2 + (√5)))^(1/3)  + ((2 − (√5)))^(1/3)  =1
2+53+253=1
Answered by mrW1 last updated on 20/Jul/17
x= ((2 + (√5)))^(1/3)   y= ((2 − (√5)))^(1/3)   let u=x+y  xy= (((2 + (√5))(2−(√5))))^(1/3) =^3 (√(4−5))=^3 (√(−1))=−1  x^3 +y^3 =(2+(√5))+(2−(√5))=4  ⇒(x+y)(x^2 +y^2 −xy)=4  ⇒(x+y)(x^2 +y^2 +2xy−3xy)=4  ⇒(x+y)[(x+y)^2 −3xy]=4  ⇒u(u^2 +3)=4  u^3 +3u−4=0  u^3 −u+4u−4=0  (u^2 −1)u+4(u−1)=0  (u−1)[u(u+1)+4]=0  (u−1)(u^2 +u+4)=0  (u−1)[(u+(1/2))^2 +((15)/4)]=0  ⇒u=1  i.e.  ((2 + (√5)))^(1/3)  + ((2 − (√5)))^(1/3)  =1
x=2+53y=253letu=x+yxy=(2+5)(25)3=345=31=1x3+y3=(2+5)+(25)=4(x+y)(x2+y2xy)=4(x+y)(x2+y2+2xy3xy)=4(x+y)[(x+y)23xy]=4u(u2+3)=4u3+3u4=0u3u+4u4=0(u21)u+4(u1)=0(u1)[u(u+1)+4]=0(u1)(u2+u+4)=0(u1)[(u+12)2+154]=0u=1i.e.2+53+253=1
Commented by Tinkutara last updated on 20/Jul/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *