Question Number 159556 by mnjuly1970 last updated on 18/Nov/21

Answered by floor(10²Eta[1]) last updated on 18/Nov/21

Commented by mnjuly1970 last updated on 19/Nov/21

Answered by Rasheed.Sindhi last updated on 19/Nov/21
![•240∣a^( 5) −a⇔ { ((16∣ a^( 5) −a)),(( 3∣ a^( 5) −a)),(( 5∣ a^( 5) −a)) :}[∵ 240=16.3.5] •a^5 −a=a(a−1)(a+1)(a^2 +1) (i)To prove:16∣ a^( 5) − a a∈O: a may be either 4k+1 or 4k+3 a=4k+1: a^5 −a=a(a−1)(a+1)(a^2 +1) =(4k+1)(4k)(4k+2)(16k^2 +8k+2) =16(4k+1)(k)(2k+1)(8k^2 +4k+1) a=4k+3: a^5 −a=(4k+3)(4k+2)(4k+4)(16k^2 +24k+10) =16(4k+3)(2k+1)(k+1)(8k^2 +12k+5) ∴ 16∣a^5 −a determinant ((( 16∣a^5 −a)))...............A (ii)To prove:3∣ a^( 5) − a a=3k→3∣a a=3k+1→3∣a−1 a=3k+2→3∣a+1 ∴ 3 ∣a^5 −a determinant (((3 ∣a^5 −a))).................B (iii)To prove:5∣ a^( 5) − a a=5k→5∣a a=5k+1→5∣a−1 a=5k+2→5∣a^2 +1 a=5k+3→5∣a^2 +1 a=5k+4→5∣a+1 ∴ 5∣a^5 −a determinant (((5∣a^5 −a))).................C From A,B & C: determinant (((240∣a^5 −a^((16.3.5)∣a^5 −a_(OR) ) )))](https://www.tinkutara.com/question/Q159594.png)
Commented by mnjuly1970 last updated on 19/Nov/21
