Menu Close

prove-that-2-a-240-a-5-a-




Question Number 159556 by mnjuly1970 last updated on 18/Nov/21
    prove that:        2∤ a ⇒ 240∣ a^( 5)  − a
provethat:2a240a5a
Answered by floor(10²Eta[1]) last updated on 18/Nov/21
240=2^4 .3.5  •by fermat: a^5 ≡a(mod5)⇒5∣a^5 −a  •a^5 −a=a(a^4 −1)=a(a^2 −1)(a^2 +1)  =(a−1)a(a+1)(a^2 +1), but since this has  a product of three consecutive numbers  it has to be multiple of 3⇒3∣a^5 −a  •now, a^5 −a=a(a^2 −1)(a^2 +1), since a is odd,  a=2k+1∴a^5 −a=(2k+1)((2k+1)^2 −1)((2k+1)^2 +1)  =(2k+1)(4k^2 +4k)(4k^2 +4k+2)  =8(2k+1)(k^2 +k)(2k^2 +2k+1), so this  is a multiple of 8⇒if we show that   (2k+1)(k^2 +k)(2k^2 +2k+1) is even, we′re done  but (2k+1)(k^2 +k)(2k^2 +2k+1)  =(2k+1)k(k+1)(2k^2 +2k+1) has a product  of two consecutive numbers, so it′s divisible by 2  ⇒16∣a^5 −a  16.3.5=240∣a^5 −a
240=24.3.5byfermat:a5a(mod5)5a5aa5a=a(a41)=a(a21)(a2+1)=(a1)a(a+1)(a2+1),butsincethishasaproductofthreeconsecutivenumbersithastobemultipleof33a5anow,a5a=a(a21)(a2+1),sinceaisodd,a=2k+1a5a=(2k+1)((2k+1)21)((2k+1)2+1)=(2k+1)(4k2+4k)(4k2+4k+2)=8(2k+1)(k2+k)(2k2+2k+1),sothisisamultipleof8ifweshowthat(2k+1)(k2+k)(2k2+2k+1)iseven,weredonebut(2k+1)(k2+k)(2k2+2k+1)=(2k+1)k(k+1)(2k2+2k+1)hasaproductoftwoconsecutivenumbers,soitsdivisibleby216a5a16.3.5=240a5a
Commented by mnjuly1970 last updated on 19/Nov/21
thanks alot ..very nice ali
thanksalot..veryniceali
Answered by Rasheed.Sindhi last updated on 19/Nov/21
 •240∣a^( 5) −a⇔ { ((16∣ a^( 5) −a)),((   3∣ a^( 5) −a)),((   5∣ a^( 5) −a)) :}[∵ 240=16.3.5]   •a^5 −a=a(a−1)(a+1)(a^2 +1)  (i)To prove:16∣ a^( 5)  − a  a∈O: a may be either 4k+1 or 4k+3  a=4k+1:  a^5 −a=a(a−1)(a+1)(a^2 +1)         =(4k+1)(4k)(4k+2)(16k^2 +8k+2)  =16(4k+1)(k)(2k+1)(8k^2 +4k+1)  a=4k+3:  a^5 −a=(4k+3)(4k+2)(4k+4)(16k^2 +24k+10)  =16(4k+3)(2k+1)(k+1)(8k^2 +12k+5)  ∴ 16∣a^5 −a    determinant ((( 16∣a^5 −a)))...............A  (ii)To prove:3∣ a^( 5)  − a  a=3k→3∣a  a=3k+1→3∣a−1  a=3k+2→3∣a+1  ∴ 3 ∣a^5 −a   determinant (((3 ∣a^5 −a))).................B  (iii)To prove:5∣ a^( 5)  − a  a=5k→5∣a  a=5k+1→5∣a−1  a=5k+2→5∣a^2 +1  a=5k+3→5∣a^2 +1  a=5k+4→5∣a+1  ∴ 5∣a^5 −a   determinant (((5∣a^5 −a))).................C  From A,B & C:            determinant (((240∣a^5 −a^((16.3.5)∣a^5 −a_(OR) ) )))
240a5a{16a5a3a5a5a5a[240=16.3.5]a5a=a(a1)(a+1)(a2+1)(i)Toprove:16a5aaO:amaybeeither4k+1or4k+3a=4k+1:a5a=a(a1)(a+1)(a2+1)=(4k+1)(4k)(4k+2)(16k2+8k+2)=16(4k+1)(k)(2k+1)(8k2+4k+1)a=4k+3:a5a=(4k+3)(4k+2)(4k+4)(16k2+24k+10)=16(4k+3)(2k+1)(k+1)(8k2+12k+5)16a5a16a5aA(ii)Toprove:3a5aa=3k3aa=3k+13a1a=3k+23a+13a5a3a5a..B(iii)Toprove:5a5aa=5k5aa=5k+15a1a=5k+25a2+1a=5k+35a2+1a=5k+45a+15a5a5a5a..CFromA,B&C:240a5a(16.3.5)a5aOR
Commented by mnjuly1970 last updated on 19/Nov/21
excellent sir Rasheed
excellentsirRasheed

Leave a Reply

Your email address will not be published. Required fields are marked *