Menu Close

prove-that-2-ln-x-dx-x-2-ln-x-ln-xe-C-




Question Number 44512 by arvinddayama01@gmail.com last updated on 30/Sep/18
prove that:−∫2^(ln x)  dx = ((x.2^(ln x) )/(ln(xe))) +C
provethat:2lnxdx=x.2lnxln(xe)+C
Commented by maxmathsup by imad last updated on 30/Sep/18
let I = ∫  2^(ln(x)) dx cha7gement ln(x)=t give  I  = ∫  2^t   e^t  dt   =∫  e^(tln(2) +t)  dt = ∫  e^((1+ln(2))t) dt  = (1/(1+ln(2))) e^((1+ln(2))t)  +c =(1/(1+ln(2))) e^((1+ln(2))ln(x))  +c  =(1/(1+ln(2))) x  .2^(ln(x))  +c    so there is aerror at the question...!
letI=2ln(x)dxcha7gementln(x)=tgiveI=2tetdt=etln(2)+tdt=e(1+ln(2))tdt=11+ln(2)e(1+ln(2))t+c=11+ln(2)e(1+ln(2))ln(x)+c=11+ln(2)x.2ln(x)+csothereisaerroratthequestion!
Answered by MJS last updated on 01/Oct/18
2^(ln x) =(e^(ln 2) )^(ln x) =e^(ln 2 ×ln x) =(e^(ln x) )^(ln 2) =x^(ln 2)   −∫x^(ln 2) dx=−(1/(1+ln 2))x^(1+ln 2) =−((x×x^(ln 2) )/(1+ln 2))=  =−((x×2^(ln x) )/(ln e +ln 2))=−((x×2^(lm x) )/(ln 2e))  so it′s wrong
2lnx=(eln2)lnx=eln2×lnx=(elnx)ln2=xln2xln2dx=11+ln2x1+ln2=x×xln21+ln2==x×2lnxlne+ln2=x×2lmxln2esoitswrong

Leave a Reply

Your email address will not be published. Required fields are marked *