Menu Close

Prove-that-2-n-2-gt-n-2-for-n-N-by-mathematical-induction-




Question Number 126124 by ZiYangLee last updated on 17/Dec/20
Prove that 2^n +2>n^(2 ) for n∈N by  mathematical induction.
Provethat2n+2>n2fornNbymathematicalinduction.
Commented by talminator2856791 last updated on 17/Dec/20
 i was having the time of my life till i read “by mathematical induction”!   hahahhhhahha
iwashavingthetimeofmylifetillireadbymathematicalinduction!hahahhhhahha
Commented by ZiYangLee last updated on 30/Dec/20
Good luck haha
Goodluckhaha
Answered by mahdipoor last updated on 17/Dec/20
we know: n≥4⇒n^2 ≥2n+1    (∗)  ∀n≥4⇒if 2^n ≥n^2 ⇒2×2^n ≥2×n^2 ⇒  2^(n+1) ≥n^2 +n^2   ⇒^∗   2^(n+1) ≥n^2 +2n+1 ⇒  2^(n+1) ≥(n+1)^2     (∗∗)  for n=4 ⇒2^n ≥n^2    ⇒^(∗∗) for: n=4+1=5⇒2^n ≥n^2    ⇒^(∗∗) for: n=5+1=6⇒2^n ≥n^2   ....  ⇒for:∀n≥4⇒2^n ≥n^2 ⇒2^n +2>n^2   for:n=1,2,3⇒2^n +2>n^2   ⇒⇒for:∀n∈N⇒2^n +2>n^2
weknow:n4n22n+1()n4if2nn22×2n2×n22n+1n2+n22n+1n2+2n+12n+1(n+1)2()forn=42nn2for:n=4+1=52nn2for:n=5+1=62nn2.for:n42nn22n+2>n2for:n=1,2,32n+2>n2⇒⇒for:nN2n+2>n2
Answered by physicstutes last updated on 17/Dec/20
prove for n = 1,  (2)^1 +2 > 1^2   assume for n = k  ⇒   2^k +2 > k^2   prove for n = k+1.   2^(k+1) +2 = 2^k .2 + 2 = 2(2^k +1)   from  2^k +2 > k^2   ⇒ 2(2^(k−1) +1) > k^2   but ∀ n ∈ N, 2^(k−1) < 2^k   ⇒ 2(2^k +1) > (k+1)^2   thus true ∀ n ∈ N
proveforn=1,(2)1+2>12assumeforn=k2k+2>k2proveforn=k+1.2k+1+2=2k.2+2=2(2k+1)from2k+2>k22(2k1+1)>k2butnN,2k1<2k2(2k+1)>(k+1)2thustruenN

Leave a Reply

Your email address will not be published. Required fields are marked *