Question Number 55704 by gunawan last updated on 03/Mar/19
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{2}}\theta\mathrm{cos}\:\frac{\mathrm{3}}{\mathrm{2}}\theta+\mathrm{2sin}\:\frac{\mathrm{5}}{\mathrm{2}}\theta\: \\ $$$$+\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{3}}{\mathrm{2}}\theta+\mathrm{2sin}\:\frac{\mathrm{3}}{\mathrm{2}}\theta\mathrm{cos}\:\frac{\mathrm{7}}{\mathrm{2}}\theta \\ $$$$=\mathrm{sin}\:\mathrm{4}\theta+\mathrm{sin}\:\mathrm{5}\theta \\ $$
Answered by Kunal12588 last updated on 03/Mar/19
$$\mathrm{2}{sin}\frac{\mathrm{1}}{\mathrm{2}}\theta\:{cos}\frac{\mathrm{3}}{\mathrm{2}}\theta\:+\mathrm{2}\:{sin}\frac{\mathrm{5}}{\mathrm{2}}\theta\:+\:\mathrm{2}{sin}\:\frac{\mathrm{3}}{\mathrm{2}}\theta\:+\:\mathrm{2}{sin}\frac{\mathrm{3}}{\mathrm{2}}\theta\:{cos}\frac{\mathrm{7}}{\mathrm{2}}\theta \\ $$$$={sin}\frac{\mathrm{3}\theta+\theta}{\mathrm{2}}−{sin}\frac{\mathrm{3}\theta−\theta}{\mathrm{2}}+\mathrm{2}\left({sin}\frac{\mathrm{5}}{\mathrm{2}}\theta+{sin}\frac{\mathrm{3}}{\mathrm{2}}\theta\right)+{sin}\frac{\mathrm{3}\theta+\mathrm{7}\theta}{\mathrm{2}}−{sin}\frac{\mathrm{7}\theta−\mathrm{3}\theta}{\mathrm{2}} \\ $$$$={sin}\mathrm{2}\theta−{sin}\theta+{sin}\mathrm{5}\theta−{sin}\mathrm{2}\theta+\mathrm{4}{sin}\frac{\left(\mathrm{5}\theta+\mathrm{3}\theta\right)/\mathrm{2}}{\mathrm{2}}{cos}\frac{\left(\mathrm{5}\theta−\mathrm{3}\theta\right)/\mathrm{2}}{\mathrm{2}} \\ $$$$={sin}\mathrm{5}\theta−{sin}\theta+\mathrm{4}{sin}\mathrm{2}\theta{cos}\frac{\theta}{\mathrm{2}} \\ $$$${so}\:{if}\:{we}\:{can}\:{prove}\:−{sin}\theta+\mathrm{4}{sin}\mathrm{2}\theta{cos}\frac{\theta}{\mathrm{2}}={sin}\mathrm{4}\theta \\ $$$${we}\:{can}\:{prove}\:{the}\:{given}\:{question} \\ $$
Commented by Kunal12588 last updated on 03/Mar/19
$${lets}\:{take}\:\theta=\frac{\pi}{\mathrm{3}} \\ $$$${sin}\mathrm{4}\theta={sin}\frac{\mathrm{4}\pi}{\mathrm{3}}={sin}\left(\pi+\frac{\pi}{\mathrm{3}}\right)=−{sin}\frac{\pi}{\mathrm{3}}=−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$−{sin}\theta+\mathrm{4}{sin}\mathrm{2}\theta{cos}\frac{\theta}{\mathrm{2}} \\ $$$$=−{sin}\frac{\pi}{\mathrm{3}}+\mathrm{4}{sin}\frac{\mathrm{2}\pi}{\mathrm{3}}{cos}\frac{\pi}{\mathrm{6}} \\ $$$$=−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}+\mathrm{4}{sin}\left(\pi−\frac{\pi}{\mathrm{3}}\right)×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$=\frac{−\sqrt{\mathrm{3}}}{\mathrm{2}}+\mathrm{4}{sin}\frac{\pi}{\mathrm{3}}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}=\frac{−\sqrt{\mathrm{3}}}{\mathrm{2}}+\mathrm{4}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$=\mathrm{3}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\neq−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\therefore−{sin}\theta+\mathrm{4}{sin}\mathrm{2}\theta{cos}\frac{\theta}{\mathrm{2}}\neq{sin}\mathrm{4}\theta\:{for}\:\theta=\frac{\pi}{\mathrm{3}} \\ $$$${so}\:{we}\:{can}\:{not}\:{prove}\:{the}\:{given}\:{question}. \\ $$$${please}\:{Recheck}\:{the}\:{question} \\ $$